more precise hypotheses
This commit is contained in:
parent
97ce86e9d2
commit
37cdca8d19
7
PR_1.aux
7
PR_1.aux
@ -7,14 +7,15 @@
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {2}Preliminaries}{1}{section.2}\protected@file@percent }
|
||||
\newlabel{a1}{{4}{1}{Structural Assumption}{theorem.4}{}}
|
||||
\newlabel{a2}{{5}{1}{Non degeneracy}{theorem.5}{}}
|
||||
\newlabel{a3}{{6}{1}{Regularity}{theorem.6}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {3}Results}{1}{section.3}\protected@file@percent }
|
||||
\newlabel{t1}{{6}{1}{Non-degenerate case}{theorem.6}{}}
|
||||
\newlabel{t1}{{7}{1}{Non-degenerate case}{theorem.7}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {4}Proofs}{1}{section.4}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {5}Appendix}{3}{section.5}\protected@file@percent }
|
||||
\newlabel{ap1}{{7}{3}{}{theorem.7}{}}
|
||||
\newlabel{ap1}{{9}{3}{}{theorem.9}{}}
|
||||
\citation{Pascu_PB2}
|
||||
\newlabel{ap2}{{10}{4}{}{theorem.10}{}}
|
||||
\citation{Pascu_PB2}
|
||||
\newlabel{ap2}{{8}{4}{}{theorem.8}{}}
|
||||
\bibcite{YAOZHONG}{1}
|
||||
\bibcite{Kolokoltsov}{2}
|
||||
\bibcite{LucePagliaPascu}{3}
|
||||
|
22
PR_1.log
22
PR_1.log
@ -1,4 +1,4 @@
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023/nixos.org) (preloaded format=pdflatex 1980.1.1) 21 NOV 2024 12:58
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023/nixos.org) (preloaded format=pdflatex 1980.1.1) 21 NOV 2024 19:23
|
||||
entering extended mode
|
||||
restricted \write18 enabled.
|
||||
%&-line parsing enabled.
|
||||
@ -607,7 +607,7 @@ File: ulasy.fd 1998/08/17 v2.2e LaTeX symbol font definitions
|
||||
{/nix/store/mhdx3hkmpns8i6czk9ygf2yc7wxlkpy0-texlive-combined-full-2023-final/s
|
||||
hare/texmf-var/fonts/map/pdftex/updmap/pdftex.map}] [2] [3]
|
||||
LaTeX Font Info: Trying to load font information for U+dsrom on input line 2
|
||||
13.
|
||||
23.
|
||||
|
||||
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
|
||||
exmfdist/tex/latex/doublestroke/Udsrom.fd
|
||||
@ -621,13 +621,13 @@ Package rerunfilecheck Info: File `PR_1.out' has not changed.
|
||||
(rerunfilecheck) Checksum: 30083D35480A9B7C09B57CB236BA0510;445.
|
||||
)
|
||||
Here is how much of TeX's memory you used:
|
||||
12823 strings out of 474116
|
||||
214406 string characters out of 5717523
|
||||
1952187 words of memory out of 5000000
|
||||
34975 multiletter control sequences out of 15000+600000
|
||||
12828 strings out of 474116
|
||||
214485 string characters out of 5717523
|
||||
1951187 words of memory out of 5000000
|
||||
34978 multiletter control sequences out of 15000+600000
|
||||
561801 words of font info for 55 fonts, out of 8000000 for 9000
|
||||
1141 hyphenation exceptions out of 8191
|
||||
63i,16n,67p,627b,551s stack positions out of 10000i,1000n,20000p,200000b,200000s
|
||||
63i,16n,67p,627b,606s stack positions out of 10000i,1000n,20000p,200000b,200000s
|
||||
</nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final
|
||||
-texmfdist/fonts/type1/public/amsfonts/cm/cmbx10.pfb></nix/store/bj92vd0x3z4f1y
|
||||
idlv488fis5rx252nk-texlive-combined-full-2023-final-texmfdist/fonts/type1/publi
|
||||
@ -657,10 +657,10 @@ dist/fonts/type1/public/doublestroke/dsrom10.pfb></nix/store/bj92vd0x3z4f1yidlv
|
||||
sfonts/symbols/msbm10.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-
|
||||
combined-full-2023-final-texmfdist/fonts/type1/public/amsfonts/symbols/msbm7.pf
|
||||
b>
|
||||
Output written on PR_1.pdf (5 pages, 216478 bytes).
|
||||
Output written on PR_1.pdf (5 pages, 219660 bytes).
|
||||
PDF statistics:
|
||||
169 PDF objects out of 1000 (max. 8388607)
|
||||
126 compressed objects within 2 object streams
|
||||
28 named destinations out of 1000 (max. 500000)
|
||||
173 PDF objects out of 1000 (max. 8388607)
|
||||
130 compressed objects within 2 object streams
|
||||
30 named destinations out of 1000 (max. 500000)
|
||||
41 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||
|
||||
|
BIN
PR_1.synctex.gz
BIN
PR_1.synctex.gz
Binary file not shown.
16
PR_1.tex
16
PR_1.tex
@ -87,9 +87,16 @@ $$
|
||||
$$
|
||||
a sufficient condition for this to occur under assupmtion \ref{a1} is if $\sigma$ is a uniformly positive definite matrix.
|
||||
\end{assumption}
|
||||
\begin{assumption}[Regularity]\label{a3}
|
||||
Assume assumption \ref{a1}. The coefficients $b$ and $\sigma$ are functions in $L^\infty([0,T],bC^\alpha)$. Explicitly
|
||||
\begin{gather*}
|
||||
\exists C>0,\ s.t.\ \forall (x_1,x_2,y_1,y_2)\in \R^{4N},\ t-\mathrm{a.s.},\qquad |b(t,x,y)|+|\sigma(t,x,y)|\leq C,\\
|
||||
\mathrm{and}\ s.t.\ |b(t,x_1,y_1)-b(t,x_2,y_2)| + |\sigma(t,x_1,y_1)-\sigma(t,x_2,y_2)|\leq C\left(|x_1-x_2|^\alpha+|y_1-y_2|^\alpha\right).
|
||||
\end{gather*}
|
||||
\end{assumption}
|
||||
\section{Results}
|
||||
\begin{theorem}[Non-degenerate case]\label{t1}
|
||||
Consider a MKV SDE under assumptions \ref{a1} and \ref{a2} with $\alpha$-Holder bounded coefficients in $(x,y)$ uniformly in $t$ and initial distribution $\mu_0\in\mathcal{P}(\R^N)$; then we have weak existance and uniqueness of the solution of the MKV SDE.
|
||||
Consider a MKV SDE under assumptions \ref{a1}, \ref{a2} and \ref{a3} and initial distribution $\mu_0\in\mathcal{P}(\R^N)$; then we have weak existance and uniqueness of the solution of the MKV SDE.
|
||||
\end{theorem}
|
||||
\section{Proofs}
|
||||
\begin{proof}of Theorem \ref{t1}.
|
||||
@ -124,8 +131,11 @@ and observe that the distribution of $X^\mu_t$ is absolutely continuous with den
|
||||
$$
|
||||
u^\mu_t(y)=U^{t,0}_\mu\mu_0.
|
||||
$$
|
||||
Thus we may define the application $\mathcal{L}:C([0,T], \mathcal{P}(\R^N))\rightarrow C([0,T], \mathcal{P}(\R^N))$ such that $\mathcal{L}((\mu_t)_{t\in[0,T]})=(\mathcal{L}^\mu_t)_{t\in[0,T]}=([X^\mu_t])_{t\in[0,T]}$. Less abstractly this is the application that given a flow of marginals returns the flow of marginals of the solution of the "linearized" SDE with the first flow of marginals.
|
||||
|
||||
Thus we may define the application $\mathcal{L}:C([0,T], \mathcal{P}(\R^N))\rightarrow C([0,T], \mathcal{P}(\R^N))$ such that $\mathcal{L}((\mu_t)_{t\in[0,T]})=(\mathcal{L}^\mu_t)_{t\in[0,T]}=([X^\mu_t])_{t\in[0,T]}$. Less abstractly this is the application that given a flow of marginals returns the flow of marginals of the solution of the "linearized" SDE with the first flow of marginals and initial datum $\mu_0$.
|
||||
\begin{remark}
|
||||
Since $\mathcal{L}^\mu_0=[X^\mu_0]=\mu_0$ for any flow of marginals the image through $\mathcal{L}$ has initial law equal to $\mu_0$.
|
||||
%Thus we image of $\mathcal{L}$ is actually contained inside $$ \left\lbrace (\nu_t)_{t\in[0,T]}\ |\ \nu_0=\mu_0 \right\rbrace.$$
|
||||
\end{remark}
|
||||
Now we need to observe carefully the definition of $d_{bC^\alpha}([X^\mu_t],[X^\nu_t])$: if we remove the $\sup$ we get
|
||||
$$
|
||||
I(f)=\int f(x)\left( [X^\mu_t](dx)-[X^\nu_t](dx) \right)=\int f(x)\left( u^\mu_t(x)-u^\nu_t(x) \right)dx,
|
||||
|
Loading…
Reference in New Issue
Block a user