initial version

This commit is contained in:
Alessio Rondelli 2024-11-19 09:09:43 +01:00
parent d9e0d8c334
commit 6ee7ac8b4b
6 changed files with 1178 additions and 0 deletions

27
nota5.aux Normal file
View File

@ -0,0 +1,27 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\citation{Kolokoltsov}
\citation{Kolokoltsov}
\citation{Kolokoltsov}
\newlabel{e1}{{1}{1}{}{equation.0.1}{}}
\newlabel{e2}{{2}{1}{}{equation.0.2}{}}
\newlabel{e3}{{3}{1}{}{equation.0.3}{}}
\newlabel{e4}{{4}{1}{}{equation.0.4}{}}
\newlabel{e4-1}{{5}{2}{}{equation.0.5}{}}
\newlabel{f1}{{6}{2}{}{equation.0.6}{}}
\citation{LucePagliaPascu}
\newlabel{a1}{{1}{3}{}{theorem.1}{}}
\citation{Kolokoltsov}
\newlabel{t1}{{5}{4}{}{theorem.5}{}}
\citation{Villani}
\citation{Bogachev}
\bibcite{Bogachev}{1}
\bibcite{Kolokoltsov}{2}
\bibcite{LucePagliaPascu}{3}
\bibcite{YAOZHONG}{4}
\bibcite{Villani}{5}
\newlabel{e10}{{7}{6}{}{equation.0.7}{}}
\newlabel{e11}{{8}{6}{}{equation.0.8}{}}
\gdef \@abspage@last{6}

686
nota5.log Normal file
View File

@ -0,0 +1,686 @@
This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023/nixos.org) (preloaded format=pdflatex 1980.1.1) 18 NOV 2024 15:45
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
**nota5.tex
(./nota5.tex
LaTeX2e <2023-11-01> patch level 1
L3 programming layer <2024-02-20>
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/base/article.cls
Document Class: article 2023/05/17 v1.4n Standard LaTeX document class
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/base/size10.clo
File: size10.clo 2023/05/17 v1.4n Standard LaTeX file (size option)
)
\c@part=\count188
\c@section=\count189
\c@subsection=\count190
\c@subsubsection=\count191
\c@paragraph=\count192
\c@subparagraph=\count193
\c@figure=\count194
\c@table=\count195
\abovecaptionskip=\skip48
\belowcaptionskip=\skip49
\bibindent=\dimen140
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/base/inputenc.sty
Package: inputenc 2021/02/14 v1.3d Input encoding file
\inpenc@prehook=\toks17
\inpenc@posthook=\toks18
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/amsmath/amsmath.sty
Package: amsmath 2023/05/13 v2.17o AMS math features
\@mathmargin=\skip50
For additional information on amsmath, use the `?' option.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/amsmath/amstext.sty
Package: amstext 2021/08/26 v2.01 AMS text
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/amsmath/amsgen.sty
File: amsgen.sty 1999/11/30 v2.0 generic functions
\@emptytoks=\toks19
\ex@=\dimen141
))
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/amsmath/amsbsy.sty
Package: amsbsy 1999/11/29 v1.2d Bold Symbols
\pmbraise@=\dimen142
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/amsmath/amsopn.sty
Package: amsopn 2022/04/08 v2.04 operator names
)
\inf@bad=\count196
LaTeX Info: Redefining \frac on input line 234.
\uproot@=\count197
\leftroot@=\count198
LaTeX Info: Redefining \overline on input line 399.
LaTeX Info: Redefining \colon on input line 410.
\classnum@=\count199
\DOTSCASE@=\count266
LaTeX Info: Redefining \ldots on input line 496.
LaTeX Info: Redefining \dots on input line 499.
LaTeX Info: Redefining \cdots on input line 620.
\Mathstrutbox@=\box51
\strutbox@=\box52
LaTeX Info: Redefining \big on input line 722.
LaTeX Info: Redefining \Big on input line 723.
LaTeX Info: Redefining \bigg on input line 724.
LaTeX Info: Redefining \Bigg on input line 725.
\big@size=\dimen143
LaTeX Font Info: Redeclaring font encoding OML on input line 743.
LaTeX Font Info: Redeclaring font encoding OMS on input line 744.
\macc@depth=\count267
LaTeX Info: Redefining \bmod on input line 905.
LaTeX Info: Redefining \pmod on input line 910.
LaTeX Info: Redefining \smash on input line 940.
LaTeX Info: Redefining \relbar on input line 970.
LaTeX Info: Redefining \Relbar on input line 971.
\c@MaxMatrixCols=\count268
\dotsspace@=\muskip16
\c@parentequation=\count269
\dspbrk@lvl=\count270
\tag@help=\toks20
\row@=\count271
\column@=\count272
\maxfields@=\count273
\andhelp@=\toks21
\eqnshift@=\dimen144
\alignsep@=\dimen145
\tagshift@=\dimen146
\tagwidth@=\dimen147
\totwidth@=\dimen148
\lineht@=\dimen149
\@envbody=\toks22
\multlinegap=\skip51
\multlinetaggap=\skip52
\mathdisplay@stack=\toks23
LaTeX Info: Redefining \[ on input line 2953.
LaTeX Info: Redefining \] on input line 2954.
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/amsfonts/amsfonts.sty
Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
\symAMSa=\mathgroup4
\symAMSb=\mathgroup5
LaTeX Font Info: Redeclaring math symbol \hbar on input line 98.
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
(Font) U/euf/m/n --> U/euf/b/n on input line 106.
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/amsfonts/amssymb.sty
Package: amssymb 2013/01/14 v3.01 AMS font symbols
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/doublestroke/dsfont.sty
Package: dsfont 1995/08/01 v0.1 Double stroke roman fonts
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/fancyhdr/fancyhdr.sty
Package: fancyhdr 2022/11/09 v4.1 Extensive control of page headers and footers
\f@nch@headwidth=\skip53
\f@nch@O@elh=\skip54
\f@nch@O@erh=\skip55
\f@nch@O@olh=\skip56
\f@nch@O@orh=\skip57
\f@nch@O@elf=\skip58
\f@nch@O@erf=\skip59
\f@nch@O@olf=\skip60
\f@nch@O@orf=\skip61
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/tools/indentfirst.sty
Package: indentfirst 2023/07/02 v1.03 Indent first paragraph (DPC)
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/graphics/graphicx.sty
Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/graphics/keyval.sty
Package: keyval 2022/05/29 v1.15 key=value parser (DPC)
\KV@toks@=\toks24
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/graphics/graphics.sty
Package: graphics 2022/03/10 v1.4e Standard LaTeX Graphics (DPC,SPQR)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/graphics/trig.sty
Package: trig 2021/08/11 v1.11 sin cos tan (DPC)
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/graphics-cfg/graphics.cfg
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
)
Package graphics Info: Driver file: pdftex.def on input line 107.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/graphics-def/pdftex.def
File: pdftex.def 2022/09/22 v1.2b Graphics/color driver for pdftex
))
\Gin@req@height=\dimen150
\Gin@req@width=\dimen151
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/base/newlfont.sty
Package: newlfont 1998/08/17 v2.2m Standard LaTeX package
LaTeX Info: Redefining \em on input line 57.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/base/latexsym.sty
Package: latexsym 1998/08/17 v2.2e Standard LaTeX package (lasy symbols)
\symlasy=\mathgroup6
LaTeX Font Info: Overwriting symbol font `lasy' in version `bold'
(Font) U/lasy/m/n --> U/lasy/b/n on input line 52.
))
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/amscls/amsthm.sty
Package: amsthm 2020/05/29 v2.20.6
\thm@style=\toks25
\thm@bodyfont=\toks26
\thm@headfont=\toks27
\thm@notefont=\toks28
\thm@headpunct=\toks29
\thm@preskip=\skip62
\thm@postskip=\skip63
\thm@headsep=\skip64
\dth@everypar=\toks30
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/mathtools/mathtools.sty
Package: mathtools 2024/03/11 v1.30 mathematical typesetting tools
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/tools/calc.sty
Package: calc 2023/07/08 v4.3 Infix arithmetic (KKT,FJ)
\calc@Acount=\count274
\calc@Bcount=\count275
\calc@Adimen=\dimen152
\calc@Bdimen=\dimen153
\calc@Askip=\skip65
\calc@Bskip=\skip66
LaTeX Info: Redefining \setlength on input line 80.
LaTeX Info: Redefining \addtolength on input line 81.
\calc@Ccount=\count276
\calc@Cskip=\skip67
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/mathtools/mhsetup.sty
Package: mhsetup 2021/03/18 v1.4 programming setup (MH)
)
\g_MT_multlinerow_int=\count277
\l_MT_multwidth_dim=\dimen154
\origjot=\skip68
\l_MT_shortvdotswithinadjustabove_dim=\dimen155
\l_MT_shortvdotswithinadjustbelow_dim=\dimen156
\l_MT_above_intertext_sep=\dimen157
\l_MT_below_intertext_sep=\dimen158
\l_MT_above_shortintertext_sep=\dimen159
\l_MT_below_shortintertext_sep=\dimen160
\xmathstrut@box=\box53
\xmathstrut@dim=\dimen161
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/units/nicefrac.sty
Package: nicefrac 1998/08/04 v0.9b Nice fractions
\L@UnitsRaiseDisplaystyle=\skip69
\L@UnitsRaiseTextstyle=\skip70
\L@UnitsRaiseScriptstyle=\skip71
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/base/ifthen.sty
Package: ifthen 2022/04/13 v1.1d Standard LaTeX ifthen package (DPC)
))
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/epstopdf-pkg/epstopdf.sty
Package: epstopdf 2020-01-24 v2.11 Conversion with epstopdf on the fly (HO)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/infwarerr/infwarerr.sty
Package: infwarerr 2019/12/03 v1.5 Providing info/warning/error messages (HO)
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/grfext/grfext.sty
Package: grfext 2019/12/03 v1.3 Manage graphics extensions (HO)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/kvdefinekeys/kvdefinekeys.sty
Package: kvdefinekeys 2019-12-19 v1.6 Define keys (HO)
))
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/kvoptions/kvoptions.sty
Package: kvoptions 2022-06-15 v3.15 Key value format for package options (HO)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/ltxcmds/ltxcmds.sty
Package: ltxcmds 2023-12-04 v1.26 LaTeX kernel commands for general use (HO)
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/kvsetkeys/kvsetkeys.sty
Package: kvsetkeys 2022-10-05 v1.19 Key value parser (HO)
))
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/pdftexcmds/pdftexcmds.sty
Package: pdftexcmds 2020-06-27 v0.33 Utility functions of pdfTeX for LuaTeX (HO
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/iftex/iftex.sty
Package: iftex 2022/02/03 v1.0f TeX engine tests
)
Package pdftexcmds Info: \pdf@primitive is available.
Package pdftexcmds Info: \pdf@ifprimitive is available.
Package pdftexcmds Info: \pdfdraftmode found.
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/epstopdf-pkg/epstopdf-base.sty
Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf
Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4
85.
Package grfext Info: Graphics extension search list:
(grfext) [.pdf,.png,.jpg,.mps,.jpeg,.jbig2,.jb2,.PDF,.PNG,.JPG,.JPE
G,.JBIG2,.JB2,.eps]
(grfext) \AppendGraphicsExtensions on input line 504.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/latexconfig/epstopdf-sys.cfg
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
e
)))
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/caption/caption.sty
Package: caption 2023/08/05 v3.6o Customizing captions (AR)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/caption/caption3.sty
Package: caption3 2023/07/31 v2.4d caption3 kernel (AR)
\caption@tempdima=\dimen162
\captionmargin=\dimen163
\caption@leftmargin=\dimen164
\caption@rightmargin=\dimen165
\caption@width=\dimen166
\caption@indent=\dimen167
\caption@parindent=\dimen168
\caption@hangindent=\dimen169
Package caption Info: Standard document class detected.
)
\c@caption@flags=\count278
\c@continuedfloat=\count279
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/caption/subcaption.sty
Package: subcaption 2023/07/28 v1.6b Sub-captions (AR)
Package caption Info: New subtype `subfigure' on input line 238.
\c@subfigure=\count280
Package caption Info: New subtype `subtable' on input line 238.
\c@subtable=\count281
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/graphics/color.sty
Package: color 2022/01/06 v1.3d Standard LaTeX Color (DPC)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/graphics-cfg/color.cfg
File: color.cfg 2016/01/02 v1.6 sample color configuration
)
Package color Info: Driver file: pdftex.def on input line 149.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/graphics/mathcolor.ltx))
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/comment/comment.sty
\CommentStream=\write3
Excluding comment 'comment')
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/geometry/geometry.sty
Package: geometry 2020/01/02 v5.9 Page Geometry
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/iftex/ifvtex.sty
Package: ifvtex 2019/10/25 v1.7 ifvtex legacy package. Use iftex instead.
)
\Gm@cnth=\count282
\Gm@cntv=\count283
\c@Gm@tempcnt=\count284
\Gm@bindingoffset=\dimen170
\Gm@wd@mp=\dimen171
\Gm@odd@mp=\dimen172
\Gm@even@mp=\dimen173
\Gm@layoutwidth=\dimen174
\Gm@layoutheight=\dimen175
\Gm@layouthoffset=\dimen176
\Gm@layoutvoffset=\dimen177
\Gm@dimlist=\toks31
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/hyperref/hyperref.sty
Package: hyperref 2024-01-20 v7.01h Hypertext links for LaTeX
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/pdfescape/pdfescape.sty
Package: pdfescape 2019/12/09 v1.15 Implements pdfTeX's escape features (HO)
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/hycolor/hycolor.sty
Package: hycolor 2020-01-27 v1.10 Color options for hyperref/bookmark (HO)
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/auxhook/auxhook.sty
Package: auxhook 2019-12-17 v1.6 Hooks for auxiliary files (HO)
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/hyperref/nameref.sty
Package: nameref 2023-11-26 v2.56 Cross-referencing by name of section
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/refcount/refcount.sty
Package: refcount 2019/12/15 v3.6 Data extraction from label references (HO)
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/gettitlestring/gettitlestring.sty
Package: gettitlestring 2019/12/15 v1.6 Cleanup title references (HO)
)
\c@section@level=\count285
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/etoolbox/etoolbox.sty
Package: etoolbox 2020/10/05 v2.5k e-TeX tools for LaTeX (JAW)
\etb@tempcnta=\count286
)
\@linkdim=\dimen178
\Hy@linkcounter=\count287
\Hy@pagecounter=\count288
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/hyperref/pd1enc.def
File: pd1enc.def 2024-01-20 v7.01h Hyperref: PDFDocEncoding definition (HO)
Now handling font encoding PD1 ...
... no UTF-8 mapping file for font encoding PD1
)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/intcalc/intcalc.sty
Package: intcalc 2019/12/15 v1.3 Expandable calculations with integers (HO)
)
\Hy@SavedSpaceFactor=\count289
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/hyperref/puenc.def
File: puenc.def 2024-01-20 v7.01h Hyperref: PDF Unicode definition (HO)
Now handling font encoding PU ...
... no UTF-8 mapping file for font encoding PU
)
Package hyperref Info: Hyper figures OFF on input line 4179.
Package hyperref Info: Link nesting OFF on input line 4184.
Package hyperref Info: Hyper index ON on input line 4187.
Package hyperref Info: Plain pages OFF on input line 4194.
Package hyperref Info: Backreferencing OFF on input line 4199.
Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
Package hyperref Info: Bookmarks ON on input line 4446.
\c@Hy@tempcnt=\count290
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/url/url.sty
\Urlmuskip=\muskip17
Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc.
)
LaTeX Info: Redefining \url on input line 4784.
\XeTeXLinkMargin=\dimen179
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/bitset/bitset.sty
Package: bitset 2019/12/09 v1.3 Handle bit-vector datatype (HO)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/bigintcalc/bigintcalc.sty
Package: bigintcalc 2019/12/15 v1.5 Expandable calculations on big integers (HO
)
))
\Fld@menulength=\count291
\Field@Width=\dimen180
\Fld@charsize=\dimen181
Package hyperref Info: Hyper figures OFF on input line 6063.
Package hyperref Info: Link nesting OFF on input line 6068.
Package hyperref Info: Hyper index ON on input line 6071.
Package hyperref Info: backreferencing OFF on input line 6078.
Package hyperref Info: Link coloring OFF on input line 6083.
Package hyperref Info: Link coloring with OCG OFF on input line 6088.
Package hyperref Info: PDF/A mode OFF on input line 6093.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/base/atbegshi-ltx.sty
Package: atbegshi-ltx 2021/01/10 v1.0c Emulation of the original atbegshi
package with kernel methods
)
\Hy@abspage=\count292
\c@Item=\count293
\c@Hfootnote=\count294
)
Package hyperref Info: Driver (autodetected): hpdftex.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/hyperref/hpdftex.def
File: hpdftex.def 2024-01-20 v7.01h Hyperref driver for pdfTeX
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/base/atveryend-ltx.sty
Package: atveryend-ltx 2020/08/19 v1.0a Emulation of the original atveryend pac
kage
with kernel methods
)
\Fld@listcount=\count295
\c@bookmark@seq@number=\count296
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/rerunfilecheck/rerunfilecheck.sty
Package: rerunfilecheck 2022-07-10 v1.10 Rerun checks for auxiliary files (HO)
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/generic/uniquecounter/uniquecounter.sty
Package: uniquecounter 2019/12/15 v1.4 Provide unlimited unique counter (HO)
)
Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
85.
)
\Hy@SectionHShift=\skip72
)
\c@theorem=\count297
\c@notation=\count298
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/l3backend/l3backend-pdftex.def
File: l3backend-pdftex.def 2024-02-20 L3 backend support: PDF output (pdfTeX)
\l__color_backend_stack_int=\count299
\l__pdf_internal_box=\box54
) (./nota5.aux)
\openout1 = `nota5.aux'.
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 52.
LaTeX Font Info: ... okay on input line 52.
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 52.
LaTeX Font Info: ... okay on input line 52.
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 52.
LaTeX Font Info: ... okay on input line 52.
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 52.
LaTeX Font Info: ... okay on input line 52.
LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 52.
LaTeX Font Info: ... okay on input line 52.
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 52.
LaTeX Font Info: ... okay on input line 52.
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 52.
LaTeX Font Info: ... okay on input line 52.
LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 52.
LaTeX Font Info: ... okay on input line 52.
LaTeX Font Info: Checking defaults for PU/pdf/m/n on input line 52.
LaTeX Font Info: ... okay on input line 52.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/context/base/mkii/supp-pdf.mkii
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count300
\scratchdimen=\dimen182
\scratchbox=\box55
\nofMPsegments=\count301
\nofMParguments=\count302
\everyMPshowfont=\toks32
\MPscratchCnt=\count303
\MPscratchDim=\dimen183
\MPnumerator=\count304
\makeMPintoPDFobject=\count305
\everyMPtoPDFconversion=\toks33
)
Package caption Info: Begin \AtBeginDocument code.
Package caption Info: hyperref package is loaded.
Package caption Info: End \AtBeginDocument code.
*geometry* driver: auto-detecting
*geometry* detected driver: pdftex
*geometry* verbose mode - [ preamble ] result:
* driver: pdftex
* paper: a4paper
* layout: <same size as paper>
* layoutoffset:(h,v)=(0.0pt,0.0pt)
* modes:
* h-part:(L,W,R)=(56.9055pt, 483.69687pt, 56.9055pt)
* v-part:(T,H,B)=(56.9055pt, 731.23584pt, 56.9055pt)
* \paperwidth=597.50787pt
* \paperheight=845.04684pt
* \textwidth=483.69687pt
* \textheight=731.23584pt
* \oddsidemargin=-15.36449pt
* \evensidemargin=-15.36449pt
* \topmargin=-52.36449pt
* \headheight=12.0pt
* \headsep=25.0pt
* \topskip=10.0pt
* \footskip=30.0pt
* \marginparwidth=57.0pt
* \marginparsep=11.0pt
* \columnsep=10.0pt
* \skip\footins=9.0pt plus 4.0pt minus 2.0pt
* \hoffset=0.0pt
* \voffset=0.0pt
* \mag=1000
* \@twocolumnfalse
* \@twosidefalse
* \@mparswitchfalse
* \@reversemarginfalse
* (1in=72.27pt=25.4mm, 1cm=28.453pt)
Package hyperref Info: Link coloring OFF on input line 52.
(./nota5.out) (./nota5.out)
\@outlinefile=\write4
\openout4 = `nota5.out'.
LaTeX Font Info: Trying to load font information for U+msa on input line 54.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/amsfonts/umsa.fd
File: umsa.fd 2013/01/14 v3.01 AMS symbols A
)
LaTeX Font Info: Trying to load font information for U+msb on input line 54.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/amsfonts/umsb.fd
File: umsb.fd 2013/01/14 v3.01 AMS symbols B
)
LaTeX Font Info: Trying to load font information for U+lasy on input line 54
.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/base/ulasy.fd
File: ulasy.fd 1998/08/17 v2.2e LaTeX symbol font definitions
) [1
{/nix/store/mhdx3hkmpns8i6czk9ygf2yc7wxlkpy0-texlive-combined-full-2023-final/s
hare/texmf-var/fonts/map/pdftex/updmap/pdftex.map}] Excluding 'comment' comment
. Excluding 'comment' comment.
Overfull \hbox (82.38083pt too wide) detected at line 184
[]
[]
[2]
LaTeX Font Info: Trying to load font information for U+dsrom on input line 2
24.
(/nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-t
exmfdist/tex/latex/doublestroke/Udsrom.fd
File: Udsrom.fd 1995/08/01 v0.1 Double stroke roman font definitions
)
Overfull \hbox (29.63692pt too wide) detected at line 235
[]
[]
[3] Excluding 'comment' comment. [4] [5] [6] (./nota5.aux)
***********
LaTeX2e <2023-11-01> patch level 1
L3 programming layer <2024-02-20>
***********
Package rerunfilecheck Info: File `nota5.out' has not changed.
(rerunfilecheck) Checksum: D41D8CD98F00B204E9800998ECF8427E;0.
)
Here is how much of TeX's memory you used:
12850 strings out of 474116
214715 string characters out of 5717523
1952187 words of memory out of 5000000
34990 multiletter control sequences out of 15000+600000
565113 words of font info for 69 fonts, out of 8000000 for 9000
1141 hyphenation exceptions out of 8191
63i,16n,67p,849b,509s stack positions out of 10000i,1000n,20000p,200000b,200000s
</nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final
-texmfdist/fonts/type1/public/amsfonts/cm/cmbx10.pfb></nix/store/bj92vd0x3z4f1y
idlv488fis5rx252nk-texlive-combined-full-2023-final-texmfdist/fonts/type1/publi
c/amsfonts/cm/cmbx12.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-c
ombined-full-2023-final-texmfdist/fonts/type1/public/amsfonts/cm/cmex10.pfb></n
ix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-texm
fdist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></nix/store/bj92vd0x3z4f1yidlv4
88fis5rx252nk-texlive-combined-full-2023-final-texmfdist/fonts/type1/public/ams
fonts/cm/cmmi5.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combine
d-full-2023-final-texmfdist/fonts/type1/public/amsfonts/cm/cmmi6.pfb></nix/stor
e/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-texmfdist/f
onts/type1/public/amsfonts/cm/cmmi7.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx
252nk-texlive-combined-full-2023-final-texmfdist/fonts/type1/public/amsfonts/cm
/cmmi8.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2
023-final-texmfdist/fonts/type1/public/amsfonts/cm/cmr10.pfb></nix/store/bj92vd
0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-texmfdist/fonts/typ
e1/public/amsfonts/cm/cmr5.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-tex
live-combined-full-2023-final-texmfdist/fonts/type1/public/amsfonts/cm/cmr6.pfb
></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-
texmfdist/fonts/type1/public/amsfonts/cm/cmr7.pfb></nix/store/bj92vd0x3z4f1yidl
v488fis5rx252nk-texlive-combined-full-2023-final-texmfdist/fonts/type1/public/a
msfonts/cm/cmr8.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combin
ed-full-2023-final-texmfdist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></nix/st
ore/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-texmfdist
/fonts/type1/public/amsfonts/cm/cmsy5.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5
rx252nk-texlive-combined-full-2023-final-texmfdist/fonts/type1/public/amsfonts/
cm/cmsy6.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full
-2023-final-texmfdist/fonts/type1/public/amsfonts/cm/cmsy7.pfb></nix/store/bj92
vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-texmfdist/fonts/t
ype1/public/amsfonts/cm/cmsy8.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-
texlive-combined-full-2023-final-texmfdist/fonts/type1/public/amsfonts/cm/cmti1
0.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023-f
inal-texmfdist/fonts/type1/public/amsfonts/cm/cmtt10.pfb></nix/store/bj92vd0x3z
4f1yidlv488fis5rx252nk-texlive-combined-full-2023-final-texmfdist/fonts/type1/p
ublic/doublestroke/dsrom10.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-tex
live-combined-full-2023-final-texmfdist/fonts/type1/public/amsfonts/symbols/msb
m10.pfb></nix/store/bj92vd0x3z4f1yidlv488fis5rx252nk-texlive-combined-full-2023
-final-texmfdist/fonts/type1/public/amsfonts/symbols/msbm7.pfb>
Output written on nota5.pdf (6 pages, 281177 bytes).
PDF statistics:
216 PDF objects out of 1000 (max. 8388607)
145 compressed objects within 2 object streams
31 named destinations out of 1000 (max. 500000)
1 words of extra memory for PDF output out of 10000 (max. 10000000)

0
nota5.out Normal file
View File

BIN
nota5.pdf Normal file

Binary file not shown.

BIN
nota5.synctex.gz Normal file

Binary file not shown.

465
nota5.tex Normal file
View File

@ -0,0 +1,465 @@
\documentclass[10pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{dsfont}
\usepackage{fancyhdr}
\usepackage{indentfirst}
\usepackage{graphicx}
\usepackage{newlfont}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{latexsym}
\usepackage{amsthm}
\usepackage{mathtools}
\usepackage{nicefrac}
\usepackage{epstopdf}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{color}
\usepackage{dsfont}
\usepackage{comment}
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
\usepackage{hyperref}
%\hypersetup{
% colorlinks=true,
% linkcolor=blue,
% filecolor=magenta,
% urlcolor=cyan,
% pdftitle={Overleaf Example},
% pdfpagemode=FullScreen,
% }
\newtheorem{theorem}{Theorem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{assumption}[theorem]{Assumption}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{example}[theorem]{Example}
\newtheorem{notation}{Notation}
\def \R {\mathbb{R}}
\def \N {\mathbb{N}}
\def \d {\mathrm{d}}
\newcommand{\red}[1]{\textcolor{red}{#1}}
\begin{document}
To start off we define the notation for the objects we will work on
$$
dX_t = B(t,X_t,\mu_{X_t})dt + \Sigma(t,X_t,\mu_{X_t})dW_t,\qquad X_0\sim\mu_0.
$$
Given the flow of marginals $\mu_t$ we can fix the coefficients and linearize the SDE with the linearized coefficients $B^\mu(t,x)$ and $\Sigma^\mu(t,x)$. Using this, we may define the infinitesimal generator
$$
\mathcal{A}_t^\mu=\frac{1}{2}\sum_{i,j=1}^N c^\mu_{ij}(t,x)\partial_{x_ix_j}+\sum_{i=1}^NB^\mu_i(t,x)\partial_{x_i}.
$$
Given this operator, under reasonable assumptions we have the existance of $p(s,x;t,y)$ fundamental solution of
\begin{align*}
(\partial_s+\mathcal{A}^\mu_s)p^\mu(s,x;t,y)&=0,\\
(\partial_t-(\mathcal{A}^\mu_t)^*)p^\mu(s,x;t,y)&=0.
\end{align*}
Having the transition density $p^\mu$ we may define the forward translation operator
$$
U_\mu^{t,s}\phi(y)=\int p^\mu(s,x;t,y)\phi(x)dx,
$$
whose definition may be easily extended to $\mathcal{P}^2(\R^N)$ due to the gaussian estimates on $p$ (which are uniform over the choice of $\mu_t$):
$$
U_\mu^{t,s}u(y)=\int p^\mu(s,x;t,y)u(dx),\qquad u\in\mathcal{P}^2(\R^N).
$$
Via this operator we may define
$$
u^\mu_t(x)=U_\mu^{t,0}\mu_0,
$$
the density of the solution of the linearized SDE via the marginal flow $(\mu_t)_{t\in[0,T]}$ with initial law $\mu_0$.
Via this density we are able to construct a new flow of marginals (the one of the solution of the linearized SDE via marginal flow $\mu_t$ and initial law $\mu_0$):
$$
\mathcal{L}^\mu_t(dy) = u^\mu_t(y)dy = \left(\int p^\mu(0,x;t,y)\mu_0(dx)\right)dy.
$$
\red{
Here we will briefly state what \cite{Kolokoltsov} does to study the contraction properties on $L^1$ norm of $u^\mu$.
To start we need the identity\footnote{In my calculations I get the adjoint operator $(\mathcal{A}_s)^*$ but in Kolokoltsov's paper there is the backward one.} (28) of \cite{Kolokoltsov}:
\begin{equation}\label{e1}
U^{t,0}_\mu - U^{t,0}_\nu = \int_0^t\frac{d}{ds}U^{t,s}_\nu U^{s,0}_\mu ds = \int_0^t U^{t,s}_\nu((\mathcal{A}^{\mu}_s)^*-(\mathcal{A}^{\nu}_s)^*)U^{s,0}_\mu ds.
\end{equation}
Then we need to observe that
\begin{align}
||U^{t,s} f||_{L^1} &= \int \left| \int p(s,x;t,y)f(x)dx\right|dy\nonumber\\
&\stackrel{Gaussian\ estimates}{\leq}C\int\int |f(x+y)|\Gamma^+(y)dy dx = C||f||_{L^1}.\label{e2}
\end{align}
Also observe that
\begin{align*}
||(\mathcal{A}^\mu_s-\mathcal{A}^\nu_s)f||_{L^1}\leq C\sup_{t,x}\left(|c^\mu(t,x)-c^\nu(t,x)|+|B^\mu(t,x)-B^\nu(t,x)|\right)||f||_{W^{1,2}},
\end{align*}
and by the fact that the operator $U^{s,0}_\mu$ is a bounded operator in $W^{1,2}$, check footnote\footnote{I am unsure of this passage, we don't actually need the $0$-derivative and due to gaussian estimates we should get something similar to $||\partial U\ f||_{L^1}\leq s^{-1/2}||f||_{L^1}$ and $||\partial^2 U\ f||_{L^1}\leq s^{-1}||f||_{L^1}$ where the second derivative is no longer integrable wrt $s$. I think something similar to (24.2.7) in dispense is happening.} we get
\begin{equation}\label{e3}
||U^{s,0}_\mu f||_{W^{1,2}}\leq C\cdot s^{-1/2}||f||_{W^{1,2}}.
\end{equation}
By \eqref{e1}, \eqref{e2} and \eqref{e3} we get
\begin{align}\nonumber
||u^\mu_t-u^\nu_t||_{L^1}=||U^{t,0}_\mu\mu_0-U^{t,0}_\mu\mu_0||_{L^1}&\leq C\int_0^t s^{-1/2}ds ||\mu_0||_{L^1}\sup_{t,x}\left(|c^\mu(t,x)-c^\nu(t,x)|+|B^\mu(t,x)-B^\nu(t,x)|\right)\\
&\leq C\sqrt{t} ||\mu_0||_{L^1}\sup_{t,x}\left(|c^\mu(t,x)-c^\nu(t,x)|+|B^\mu(t,x)-B^\nu(t,x)|\right).\label{e4}
\end{align}
Now that we briefly stated the ideas of \cite{Kolokoltsov} we can begin.}
To leave as many doors open as possible we first define
$$
I(f) := \int f(x)(u^\mu_t(x)-u^\nu_t(x))dx,
$$
which at the moment may be seen as an indicator of closeness between the two densities, at a later moment we will take the $\sup$ for $f$ in some bounded functional space like the bounded Holder functions or the bounded functions.
%Now we will change a bit what \cite{Kolokoltsov} did to work in the Wasserstein framework. To start off we apply the duality formula for the KantorovichRubinstein distance (Remark 6.5 of \cite{Villani}):
%\begin{align*}
%W^{(1)}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t) = \sup_{||f||_{Lip}\leq1}\left(\int f(x)(u^\mu_t(x)-u^\nu_t(x))dx\right)=:\sup_{||f||_{Lip}\leq1}I(f).
%\end{align*}
Now we apply this useful trick: if we write explicitly the definition of $u^\mu$ as the evaluation of $p^\mu$ on the distribution $\mu_0$ in $I(f)$ we can change the order of integration to evaluate $p^\mu$ on the regular distribution $f(x)dx$, this is useful because it switches the operators in Kolokoltsov's formula \eqref{e1} from being forward to being backwards while changing only marginally everything else. If we define the backward propagator operator
\begin{equation}\label{e4-1}
V^{s,t}_\mu g(y):=\int p^\mu(s,y;t,x)g(x)dx,
\end{equation}
we can expand $I(f)$ this way
\begin{align*}
I(f) &= \int\int f(x)(p^\mu-p^\nu)(0,y;t,x)\mu_0(dy)dx = \mu_0\left(\int f(x)(p^\mu-p^\nu)(0,\cdot;t,x)dx\right)\\
&=\mu_0\left(\int_0^t\frac{d}{ds}\left(\int\int p^\mu(0,\cdot;s,z)p^\nu(s,z;t,x)f(x)dxdz\right)ds\right)\\
&=\mu_0\left(\int_0^t \int\int\partial_{t_2}p^\mu(0,\cdot;s,z)p^\nu(s,z;t,x)f(x)dxdz + \int\int p^\mu(0,\cdot;s,z)\partial_{t_1}p^\nu(s,z;t,x)f(x)dxdz ds\right)
\intertext{by the fact that $p$ is the fundamental solution for both the forward and backward PDEs}
&=\mu_0\left(\int_0^t \int\int(\mathcal{A}_s^\mu)^* p^\mu(0,\cdot;s,z)p^\nu(s,z;t,x)f(x)dxdz - \int\int p^\mu(0,\cdot;s,z)\mathcal{A}_s^\nu p^\nu(s,z;t,x)f(x)dxdz ds\right)\\
&=\mu_0\left(\int_0^t \int(\mathcal{A}_s^\mu)^* p^\mu(0,\cdot;s,z)V_\nu^{s,t}f(z)dz - \int (\mathcal{A}_s^\nu)^*p^\mu(0,\cdot;s,z) V_\nu^{s,t}f(z)dz ds\right)\\
&=\mu_0\left(\int_0^t \int p^\mu(0,\cdot;s,z)\left(\mathcal{A}_s^\mu - \mathcal{A}_s^\nu\right)V_\nu^{s,t}f(z)dz ds\right)\\
&=\mu_0\left(\int_0^t V_\mu^{0,s}\left(\mathcal{A}_s^\mu - \mathcal{A}_s^\nu\right)V_\nu^{s,t}f ds\right)=\int_0^t \mu_0\left(V_\mu^{0,s}\left(\mathcal{A}_s^\mu - \mathcal{A}_s^\nu\right)V_\nu^{s,t}f \right) ds.
\end{align*}
Using similar arguments it is possible to obtain also Kolokoltsov's formula \eqref{e1}:
\begin{equation*}
I(f) = \int_0^t f\left(U_\nu^{t,s}\left((\mathcal{A}_s^\mu)^* - (\mathcal{A}_s^\nu)^*\right)U_\mu^{s,0}\mu_0 \right) ds.
\end{equation*}
Now we can try to estimate $I(f)$:
\begin{align}\nonumber
I(f)&\leq \int_0^t \left|\mu_0\left( V^{0,s}_\mu\left( \mathcal{A}^\mu_s - \mathcal{A}^\nu_s \right)V^{s,t}_\nu f\right)\right| ds,
\intertext{since $\mu_0$ is a probability measure we can bound $\mu_0(g)$ with the uniform bound of $g$: $\mu_0(g)\leq |g|_\infty$:}
&\leq \int_0^t \sup_x\left(V^{0,s}_\mu\left( \mathcal{A}^\mu_s - \mathcal{A}^\nu_s \right)V^{s,t}_\nu f(x)\right) ds.\label{f1}
\end{align}
We observe that due to Holder's inequality and the fact that $p^\mu(0,x;s,y)dy$ is a probability measure for any fixed $x$ we have uniformly in $x$
$$
|V^{0,s}_\mu g(x)|=\left| \int p^\mu(0,x;s,y)g(y)dy \right|\leq ||g||_{L^\infty}.
$$
Thus continuing from \eqref{f1} we have
\begin{align*}
I(f)&\leq \int_0^t ||\left( \mathcal{A}^\mu_s - \mathcal{A}^\nu_s \right)V^{s,t}_\nu f(x)||_{L^\infty} ds\leq \\
&\leq \sup_{s,x}\left(|B^\mu(s,x)-B^\nu(s,x)|+|c^\mu(s,x)-c^\nu(s,x)|\right)\int_0^t ||\bigtriangledown V^{s,t}_\nu f||_{L^\infty} + ||Hess\ V^{s,t}_\nu f||_{L^\infty} ds.
\end{align*}
\begin{theorem}\label{a1}
\begin{comment}
If $f$ is a Lipschitz function with $[f]_{Lip}\leq 1$ then
\begin{enumerate}
\item $||Hess\ V^{s,t}_\nu f||_{L^\infty}\leq \frac{C}{\sqrt{t-s}}$.
\item $||\bigtriangledown V^{s,t}_\nu f||_{L^\infty}\leq C$.
\end{enumerate}
\end{comment}
If $f$ is a $C^\alpha_B$ function with $||f||_{C^\alpha_B}\leq 1$ then
\begin{enumerate}
\item $||Hess\ V^{s,t}_\nu f||_{L^\infty}\leq \frac{C}{|t-s|^{1-\frac{\alpha}{2}}}$.
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{comment}
Let's first tackle the case with $f$ Lipschitz. Let $x\in\R^N$. We have
\begin{align*}
\left| \partial_{x_ix_j}V^{s,t}_\nu f (x) \right|&=\left| \int\partial_{x_i x_j}p^\nu(s,x;t,y)f(y)dy \right|\leq \left| \int\partial_{x_i x_j}p^\nu(s,x;t,y)(f(y)-f(x))dy \right|+ \left| \int\partial_{x_i x_j}p^\nu(s,x;t,y)dyf(x) \right|\\
&\leq \int |\partial_{x_ix_j}p^\nu(s,x;t,y)||x-y|dy + \left| \partial_{x_ix_j}\underbrace{\int p^\nu(s,x;t,y) dy}_{=1} \right||f(x)|\\
&\leq \frac{C}{|t-s|}\int \Gamma^+(t-s,x-y)|x-y|dy + 0\leq \frac{C}{\sqrt{t-s}}.
\end{align*}
The second inequality for the Lipschitz case is done in a completely analogous manner. Let's consider the Holder case
\end{comment}
\begin{align*}
\left| \partial_{x_ix_j}V^{s,t}_\nu f (x) \right|&=\left| \int\partial_{x_i x_j}p^\nu(s,x;t,y)f(y)dy \right|\leq \left| \int\partial_{x_i x_j}p^\nu(s,x;t,y)(f(y)-f(e^{(t-s)B}x))dy \right|+ \left| \int\partial_{x_i x_j}p^\nu(s,x;t,y)dyf(e^{(t-s)B}x) \right|\\
&\leq \int |\partial_{x_ix_j}p^\nu(s,x;t,y)||e^{(t-s)B}x-y|^\alpha_B dy + \left| \partial_{x_ix_j}\underbrace{\int p^\nu(s,x;t,y) dy}_{=1} \right||f(e^{(t-s)B}x)|\\
&\leq \frac{C_{B,\alpha}}{|t-s|}\int \Gamma^+(t-s,x-y)|x-e^{-(t-s)B}y|^\alpha_B dy + 0\leq \frac{C_{B,\alpha}}{|t-s|^{1-\frac{\alpha}{2}}}.
\end{align*}
by Lemma (A.5) of \cite{LucePagliaPascu}.
\end{proof}
We will now define
$$
d_{C^{\alpha}_B}(\mu,\nu)=\sup_{||f||_{C^{\alpha}_B}\leq 1}\left|\int f(x)\left(\mu(dx)-\nu(dx)\right) \right|
$$
the bounded anisotropic $\alpha$-Holder distance.
\begin{theorem}
The bounded anisotropic $\alpha$-Holder distance metrizes weak convergence of measures. More precisely given $(\mu_n)_{n\in\N}$ and $\mu$ probability measures
$$
d_{C^{\alpha}_B}(\mu_n,\mu)\rightarrow 0 \Leftrightarrow \mu_n\stackrel{d}{\rightarrow}\mu.
$$
\end{theorem}
\begin{proof}
The proof will be divided in two steps and is mostly taken from \url{https://sites.stat.washington.edu/jaw/COURSES/520s/522/HO.522.20/ch11c.pdf}
1) First we prove that
$$
\mu_n\stackrel{d}{\rightarrow}\mu \Leftrightarrow \int f d\mu_n\rightarrow\int f d\mu,\ \forall f\in C^{\alpha}_B.
$$
If $\mu_n\stackrel{d}{\rightarrow}\mu$ then equivalently $\int f\mu_n\rightarrow\int f\mu$ for any function $f\in bC$ which in particular means that it is true for any $f\in C^{\alpha}_B$. The converse is true because if $\int f\mu_n\rightarrow\int f\mu$ for any function $f\in C^{\alpha}_B$ then in particular it is true for any $f\in bLip$ which by Portmanteau's theorem implies weak convergence.
2) We will now prove that
$$
\int f d\mu_n\rightarrow\int fd\mu \ \forall f\in C^{\alpha}_B \Leftrightarrow d_{C^{\alpha}_B}(\mu_n,\mu)\rightarrow0.
$$
The easy implication is the right-to-left one: indeed by comparison theorem
$$
\lim_n \int f(x) \left( \mu_n(dx)-\mu(dx) \right)\leq \lim_n \sup_{||f||_{C^{\alpha}_B}\leq 1}\left|\int f(x) \left( \mu_n(dx)-\mu(dx) \right)\right| = \lim_n d_{C^{\alpha}_B}(\mu_n,\mu)\rightarrow0.
$$
The other way is more challenging, first by continuity from below of probability measures for any fixed $\epsilon>0$ there exists $K$ a compact set such that $\mu(K)>1-\epsilon$. Let $\mathcal{H}=\left\lbrace f\in C^{\alpha}_B\ |\ ||f||_{C^{\alpha}_B}\leq 1 \right\rbrace$, if we restrict each of these functions on $K$ we have that $\mathcal{H}\vert_K$ is totally bounded with respect to the $||\cdot||_\infty$ norm by Ascoli-Arzelà's theorem, in particular $\exists k$ finite and $f_1,\cdots f_k\in \mathcal{H}\vert_K$ such that for any $f\in\mathcal{H}$ $\exists j$ such that $\sup_K|f-f_j|\leq\epsilon$.
Now if we consider $d_B(x,y)=|x-y|_B$ and $K^\epsilon=\left\lbrace x\in\R^N\ |\ d_B(x,K)\leq\epsilon \right\rbrace$ and $f,f_j$ as before we have
$$
\sup_{x\in K^\epsilon}|f(x)-f_j(x)|\leq \sup_{x\in K^\epsilon}\left( |f(x)-f(y_x)| + |f(y_x)-f_j(y_x)| + |f_j(y_x)-f_j(x)|\right)\leq \sup_{x\in K^\epsilon}\left( 2\epsilon^\alpha + \epsilon \right)\leq C_\alpha\epsilon^\alpha.
$$
where $y_x$ is a point in $K$ such that $|x-y|_B<\epsilon$. $C_\alpha$ may be taken uniformly of $\epsilon$ as long as $\epsilon\leq 1$.
Let $g(x)=\max\left( 0, 1-\frac{d_B(x,K)}{\epsilon} \right)$, evidently $g\in bLip\subseteq C^{\alpha}_B$ and $\mathds{1}_K\leq g\leq \mathds{1}_{K^\epsilon}$. Thus by taking $n$ big enough we have by convergence against $C^{\alpha}_B$ functions that
$$
\mu_n(K^\epsilon)\geq\int g(x) \mu_n(dx) > 1 - 2\epsilon.
$$
Thus by taking $f\in\mathcal{H}$ and the associated $f_j$ we have
\begin{align*}
\left| \int f(x)\left(\mu_n(dx)-\mu(dx)\right) \right|&= \left| \int (f(x)-f_j(x))\left(\mu_n(dx)-\mu(dx)\right) \right| + \left| \int f_j(x)\left(\mu_n(dx)-\mu(dx)\right) \right|\\
&\leq \left| \int (f(x)-f_j(x))\mu_n(dx) \right| + \left| \int (f(x)-f_j(x))\mu(dx) \right| + \left| \int f_j(x)\left(\mu_n(dx)-\mu(dx)\right) \right|\\
&\leq \left| \int_{K^\epsilon} (f(x)-f_j(x))\mu_n(dx) \right| + \left| \int_{(K^\epsilon)^c} (f(x)-f_j(x))\mu_n(dx) \right| + \left| \int_{K^\epsilon} (f(x)-f_j(x))\mu(dx) \right| + \\
&\qquad + \left| \int_{(K^\epsilon)^c} (f(x)-f_j(x))\mu(dx) \right| + \left| \int f_j(x)\left(\mu_n(dx)-\mu(dx)\right) \right|\\
&\leq C_\alpha\epsilon^\alpha + 4\epsilon + C_\alpha\epsilon^\alpha+2\epsilon+\epsilon\leq C_\alpha\epsilon^\alpha,
\end{align*}
where the last term gets bounded by taking $n$ big enough and by using convergence against $C^{\alpha}_B$ functions, this gives us the final result.
\end{proof}
\begin{theorem}
For small values of $T$; if the coefficients of the SDE are $C^\alpha_B$ functions of $y$ uniformly in $(t,x)$ (the $C^\alpha_B$ norm is uniformly bounded in $(t,x)$) we have that the application $\mathcal{L}:C([0,T],\mathcal{P}(\R^N))\rightarrow C([0,T],\mathcal{P}(\R^N))$ that $\mathcal{L}((\mu_t)_{t\in[0,T]})=(\mathcal{L}^\mu_t)_{t\in[0,T]}$ is a contraction wrt the distance
$$
d((\mu_t)_{t\in[0,T]},(\nu_t)_{t\in[0,T]})=\sup_{t\in[0,T]}d_{C^\alpha_B}(\mu_t,\nu_t).
$$
\end{theorem}
\begin{proof}
We have
\begin{align*}
d_{C^{\alpha}_B}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)&=\sup_{||f||_{C^{\alpha}_B}\leq 1}|I(f)|\leq\\
&\stackrel{Th.\ \ref{a1}}{\leq} C\sup_{s,x} \left(|B^\mu(s,x)-B^\nu(s,x)|+|c^\mu(s,x)-c^\nu(s,x)|\right)\int_0^t \left(\frac{1}{|t-s|^{1-\frac{\alpha}{2}}} + \frac{1}{\sqrt{t-s}}\right)ds\\
&\leq C_T|t|^\frac{\alpha}{2}\sup_{s,x} \left(|B^\mu(s,x)-B^\nu(s,x)|+|c^\mu(s,x)-c^\nu(s,x)|\right).
\end{align*}
Now we observe that since the coefficients are uniformly $C^\alpha_B$ we have
$$
|B^\mu(s,x)-B^\nu(s,x)|=\left| \int b(s,x,y)\mu_s(dy) - \int b(s,x,y)\nu_s(dy) \right|\leq C d_{C^{\alpha}_B}(\mu_s,\nu_s),
$$
where $C=||b||_{C^{\alpha}_B}$, a priori it depends on $(s,x)$ but since $b$ uniformly $C^\alpha_B$ it can be taken uniformly in $(s,x)$. It is also possible to prove that
$$
|c^\mu(s,x)-c^\nu(s,x)|\leq C ||\sigma||_{\infty}d_{C^{\alpha}_B}(\mu_s,\nu_s).
$$
with these we can conclude that
$$
d_{C^{\alpha}_B}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)\leq C|t|^\frac{\alpha}{2}\sup_{s\in[0,t]} d_{C^{\alpha}_B}(\mu_s,\nu_s),
$$
and thus
$$
\sup_{t\in[0,T]}d_{C^{\alpha}_B}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)\leq C|T|^\frac{\alpha}{2}\sup_{t\in[0,T]}d_{C^{\alpha}_B}(\mu_t,\nu_t).
$$
which proves contraction for small valus of $T$.
\end{proof}
\begin{comment}
\red{
We will now define\footnote{to be precise the Wasserstein metric is defined differently, still by the duality formula for the Wasserstein $1$-distance (Remark 6.5 of \cite{Villani}) the two definitions are equivalent}
\begin{align*}
d_{bL}(\mu,\nu)&=\sup_{||f||_{bLip}\leq 1} \left|\int f(x)\left(\mu(dx)-\nu(dx)\right)\right|,\\
W^{(1)}(\mu,\nu)&=\sup_{||f||_{Lip}\leq 1} \left|\int f(x)\left(\mu(dx)-\nu(dx)\right)\right|,
\end{align*}
respectively the bounded Lipschitz distance and the Wasserstein $1$-distance. It is possible to prove that convergence in these distances implies weak convergence of measures.
First let's concentrate on the bounded Lipschitz case, consider the coefficients of the SDE to be bounded and globally Lipschitz in the $y$ variable ($b(t,x,y)$), then we have
\begin{align*}
d_{bL}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)&= \sup_{||f||_{bLip}\leq 1}|I(f)|\leq\\
&\stackrel{Assumption\ 1}{\leq} C\sup_{s,x} \left(|B^\mu(s,x)-B^\nu(s,x)|+|c^\mu(s,x)-c^\nu(s,x)|\right)\int_0^t \frac{1}{\sqrt{t-s}}\left(||f||_{L^\infty}+||f||_{Lip}\right)ds\\
\intertext{but the sum of these norms of $f$ is equal to $||f||_{bLip}$ which is less than $1$,}
&\leq C\sqrt{t}\sup_{s,x} \left(|B^\mu(s,x)-B^\nu(s,x)|+|c^\mu(s,x)-c^\nu(s,x)|\right).
\end{align*}
Now we most importantly observe that since the coefficients are bounded and Lipschitz we have
$$
|B^\mu(s,x)-B^\nu(s,x)|=\left| \int b(s,x,y)\mu_s(dy) - \int b(s,x,y)\nu_s(dy) \right|\leq C d_{bL}(\mu_s,\nu_s),
$$
where $C=||b||_{bLip}$, a priori it depends on $(s,x)$ but since $b$ is globally Lipschitz and bounded it can be taken uniformly in $(s,x)$. It is also possible to prove that
$$
|c^\mu(s,x)-c^\nu(s,x)|\leq C ||\sigma||_{\infty}d_{bL}(\mu_s,\nu_s).
$$
with these we can conclude that
$$
d_{bL}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)\leq C\sqrt{t}\sup_{s\in[0,t]} d_{bL}(\mu_s,\nu_s),
$$
and thus
$$
\sup_{t\in[0,T]}d_{bL}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)\leq C\sqrt{T}\sup_{t\in[0,T]}d_{bL}(\mu_t,\nu_t).
$$
which proves contraction for small valus of $T$.
If we consider the case with coefficients globally Lipschitz in $y$ but with $b$ possibly unbounded we have
\begin{align*}
W^{(1)}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)&=\sup_{||f||_{Lip}\leq 1}|I(f)|\leq\\
&\stackrel{Assumption\ 1}{\leq} C\sqrt{t} \sup_{s,x} \left(|B^\mu(s,x)-B^\nu(s,x)|+|c^\mu(s,x)-c^\nu(s,x)|\right)
\intertext{using the estimates on $B$ and $c$ as above but with the Wasserstein distance since now $b$ is not bounded}
&\leq C\sqrt{t}\sup_{s\in[0,t]}W^{(1)}(\mu_s,\nu_s)
\end{align*}
and thus
$$
\sup_{t\in[0,T]}W^{(1)}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)\leq C\sqrt{T}\sup_{t\in[0,T]}W^{(1)}(\mu_t,\nu_t).
$$
which proves contraction for small valus of $T$.}
\end{comment}
\begin{remark}
This approach of having the $\sup$ in the distance over the space of functions of the same regularity of the coefficients of the SDE seems quite natural ($b$ and $f$ in the same bounded space). It doesn't seem impossible to use these types of techniques for even broader classes of coefficients as long as there are gaussian estimates.
\end{remark}
%At this point we can try to bound $I(f)$:
%\begin{equation}\label{e6}
%\mu_0(g)=\int g(y)\mu_0(dy)\leq ||g||_{L^1(\mu_0)}.
%\end{equation}
%By Gaussian estimates we can observe that the backward propagation operator $V^{0,s}$ is a bounded operator\footnote{Here there is an error in the last equality since $\mu_0$ is not translation invariant. We could try to work with the $W^{(2)}$ distance or make this last inequality work.} in $L^1(\mu_0)$:
%\begin{align}\label{e7}
%||V^{0,s}_\mu g||_{L^1(\mu_0)}\leq \int\left|\int p^\mu(0,x;s,y)g(y)dy\right|\mu_0(dx)\leq C\int\int |g(z+x)|\Gamma^+(|s|,z)dz\mu_0(dx)=C||g||_{L^1(\mu_0)}.
%\end{align}
%Similarly to \cite{Kolokoltsov}, but without using the adjoint operator so without the need to ask for regularity of the coefficients, we can show the following bound:
%\begin{align}\nonumber
%||(\mathcal{A}^\mu_s-\mathcal{A}^\nu_s)g||_{L^1(\mu_0)}&=||(B^\mu_s-B^\nu_s)\bigtriangledown g +\frac{1}{2}\left\langle (c^\mu_s-c^\nu_s)\bigtriangledown, \bigtriangledown\right\rangle g||_{L^1(\mu_0)}\\ \label{e8}
%&\leq \sup_{s,x}\left( |B^\mu_s(x)-B^\nu_s(x)| + |c^\mu_s(x)-c^\nu_s(x)| \right)||g||_{W^{2,1}(\mu_0)}.
%\end{align}
%The following inequality still needs to be properly proved but is stated as (13) in \cite{Kolokoltsov} and seems reasonable
%\begin{equation}\label{e9}
%||V_\nu^{s,t}f||_{W^{2,1}(\mu_0)}\leq Cs^{-\frac{1}{2}}||f||_{W^{1,1}(\mu_0)}.
%\end{equation}
%Now we employ a couple of observations. Firstly $I(f)$ is invariant with respect to translations: $I(f+c)=I(f),\ \forall c\in\R$; for this reason without loss of generality $f(0)=0$ and thus
%\begin{align*}
%||f||_{L^1(\mu_0)}&=\int|f(x)|\mu_0(dx)\leq \int|f(x)-f(0)|\mu_0(dx) + \int|f(0)|\mu_0(dx)\leq ||f||_{Lip}\int |x|\mu_0(dx) = C,\\
%||\bigtriangledown f||_{L^1(\mu_0)}&\leq \int ||f||_{Lip}\mu_0(dx) = 1.
%\end{align*}
%Thus putting everything together in \eqref{e6}-\eqref{e9} and noticing that the estimate is uniform for any $f$ with Lipschitz constant bounded by $1$ we obtain
%$$
%W^{1}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)\leq \int_0^t C\sup\left( |B^\mu-B^\nu| + |a^\mu-a^\nu| \right)s^{-\frac{1}{2}}ds = Ct^{\frac{1}{2}}\sup\left( |B^\mu-B^\nu| + |c^\mu-c^\nu| \right).
%$$
%Now, if we are able to prove an inequality in the form $\sup\left( |B^\mu-B^\nu| + |c^\mu-c^\nu|\right)\leq \sup_t W^{(1)}(\mu_t,\nu_t)$ we have a contraction. If the coefficients are Lipschitz in the third variable this is mostly trivial
%\begin{gather*}
%\sup\left( |B^\mu-B^\nu|\right)\leq \sup_{t,x}\left(\left|\int b(t,x,y_1)\mu_t(dy_1)-\int b(t,x,y_2)\nu_t(dy_2)\right| \right)\leq L\sup_{t,x}\left( \int|y_1-y_2|\gamma(dy_1,dy_2) \right)\\
%\stackrel{\inf}{\Rightarrow} \sup\left( |B^\mu-B^\nu|\right)\leq L\sup_{t,x}W^{(1)}(\mu_t,\nu_t),
%\end{gather*}
%this should also work for $c$ but the matrix form is a bit more challenging. If everything goes according to plan we should achieve that for small $T$ we have the contraction
%$$
%\sup_tW^{(1)}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)\leq C\sqrt{T} \sup_tW^{(1)}(\mu_t,\nu_t).
%$$
%\begin{small}
%\red{
%Let's concentrate for a moment on $B$:
%\begin{align*}
%|B^\mu(t,x)-B^\nu(t,x)|&=|B(t,x,\mu_t)-B(t,x,\nu_t)|=\left|\int b(t,x,y)\mu_t(dy)-\int b(t,x,z)\nu_t(dz)\right|
%\intertext{Given $\gamma$ a law of marginals $\mu_t$ and $\nu_t$}
%&\leq \left|\int b(t,x,y)-b(t,x,z)\gamma(dy,dz)\right|
%\stackrel{\alpha-Hold}{\leq} ||b||_{C^{0,\alpha}}\int |y-z|^\alpha\gamma(dy,dz)
%\intertext{This is uniform over $\gamma$, by passing to the inf we arrive to the Wasserstein distance}
%|B^\mu(t,x)-B^\nu(t,x)|&\leq ||b||_{C^{0,\alpha}} W^{(\alpha)}(\mu_t,\nu_t)^\alpha\stackrel{Jensen}{\leq} ||b||_{C^{0,\alpha}}W^{(2)}(\mu_t,\nu_t)^\alpha.
%\end{align*}
%Probably something similar may be proven for $c$, effectively $c=\Sigma\Sigma^*$ and $\Sigma$ is $\alpha$-Holderian wrt the Wasserstein distance.\\
%This should almost prove what we need, we just need an inequality to bound\footnote{to accomplish such a feat the "$\inf$" part of the Wasserstein is fundamental since if for simplicity we consider the product of $Unif_{[0,1]}$ with itself it is very far from $0$ while the Wasserstein distance between a law and itself is $0$. More heuristically with the $\inf$ the Wasserstein considers heavily correlated random variables pair which drastically lower the value of the distance.} $W^{(2)}(\mathcal{L}^\mu_t,\mathcal{L}^\nu_t)$ with $||u^\mu_t-u^\nu_t||_{L^1}$. Alternatively we could bound $\sup_tW^{(2)}(\mu_t,\nu_t)$ with the $L^1$ norm of the difference of the densities associated with $\mu_t$ and $\nu_t$. Depending on the case the contraction is applied on $C([0,T]\times\mathcal{P}^2(\R^n))$ or in $C([0,T]\times L^1(\R^N))$.\\
%A little observation with the $W^{(1)}$ distance: due to Kantarovich's duality theorem we have (\cite{Villani} remark 6.5)
%\begin{align*}
%W^{(1)}(\mu,\nu)&=\sup_{||f||_{Lip}\leq1}\left(\int f\mu-\int f\nu\right)\stackrel{AC}{=}\sup_{||f||_{Lip}\leq1}\left(\int f(x)(\gamma_\mu(x)-\gamma_\nu(x))dx\right)\\
%&\stackrel{Lipschitz}{\leq}\int|x-x_0|\cdot|\gamma_\mu(x)-\gamma_\nu(x)|dx
%\end{align*}
%In some cases the inequality seems an equality. For simplicity let's consider the $1$-d case and define $\beta(dt)=|\gamma_\mu(t)-\gamma_\nu(t)|dt$:
%\begin{align*}
%W^{(1)}(\mu,\nu)&\leq\int_{-\infty}^{+\infty}|t|\beta(dt)=\int_0^{+\infty}t\beta(dt)-\int_{-\infty}^0t\beta(dt)\\
%&=\int_0^{+\infty}\int_0^tdx\beta(dt)+\int_{-\infty}^0\int_t^0dx\beta(dt)=\int_0^{+\infty}\beta([x,+\infty[)dx+\int_{-\infty}^0\beta(]-\infty,x])dx\\
%&=\int_0^{+\infty}\beta(]-\infty,-x]\cup[x,+\infty[)dx=\int_0^{+\infty}\int_{\R\setminus[-x,x]}|\gamma_\mu(t)-\gamma_\nu(t)|dtdx.
%\end{align*}
%Unfortunately here there is no space for bounding the Wasserstein distance with the $L^1$ distance: if we consider the densities uniform in $[n,n+1]$ and $[n+1/2,n+3/2]$ we get that the constant $C$ in $W^{(1)}(\mu,\nu)\leq C||\gamma_\mu-\gamma_\nu||_{L^1}$ needs to be arbitrarily big. The following theorem should shelter us from this type of problems.}
%\end{small}
There is the property of tightness for the family of measures that are solution of an SDE with $\alpha$-Holder coefficients and with initial law with finite $p$-moment:
\begin{theorem}\label{t1}
Let $\mu_0\in\mathcal{P}^p(\R^N)$. Let $p(s,x;t,y)$ be a fundamental solution of a forward Kolmogorov equation with $\alpha$-Holderian coefficients so that Gaussian estimates exist. Then for any $\epsilon>0$ there exists $K>0$ such that
$$
\int_{B_K^c}u_t(x)dx<\epsilon,\qquad \int_{B_K^c}|x|^pu_t(x)dx<\epsilon.
$$
Where $u_t(x)=\int p(0,y;t,x)\mu_0(dy)$.
\end{theorem}
\begin{proof}
The proof is a little variation of (3.2) in \cite{Kolokoltsov}; indeed the first inequality is proved there. Fix $\epsilon>0$. Let $\tilde{\epsilon}>0$ that we will fix later. Since $\mu_0$ is a measure with finite $p$-moment there exists $K>0$ such that
$$
\mu_0(B_K^c)<\tilde{\epsilon},\qquad \int_{B_K^c}|x|^p\mu_0(dx)<\tilde{\epsilon}.
$$
Let $\tilde{K}>0$ that we will fix later.
\begin{align*}
\int_{|x|\geq K+\tilde{K}}|x|^pu_t(x)dx&\stackrel{Gaussian\ estimates}{\leq} C\int_{|x|\geq K+\tilde{K}}|x|^p\int\Gamma^+(x-\xi,t)\mu_0(d\xi)dx\\
&\leq C\int_{|\xi|\geq K,y\in\R^N}|y+\xi|^p\Gamma^+(y,t)\mu_0(d\xi)dy + C\int_{|\xi|\leq K,y\geq\tilde{K}}|y+\xi|^p\Gamma^+(y,t)\mu_0(d\xi)dy\\
&\leq C_p\mu_0(B_K^c)\int |y|^p\Gamma^+(y,t)dy+C_p\int_{B_K^c}|\xi|^p\mu_0(d\xi)\\
&\qquad+C_p\mu_0(B_k)\int_{B_{\tilde{K}}^c}|y|^p\Gamma^+(y,t)dy + C_p\int|\xi|^p\mu_0(d\xi)\int_{B_{\tilde{K}}^c}\Gamma^+(y,t)dy
\intertext{The first two terms get bounded by the preliminary inequalities and the fact that the Gaussian has finite $p$ moment. The last two terms get bounded by a constant $\tilde{C}_{p,\tilde{K},T}$ that goes to $0$ as $\tilde{K}$ goes to $+\infty$.}
&\leq C_{T,p}\tilde{\epsilon} + C_p\tilde{\epsilon} + C_p\tilde{C}_{p,\tilde{K},T} + C_{p,\mu_0}\tilde{C}_{p,\tilde{K},T}.
\end{align*}
if we choose $\tilde{\epsilon}$ small enough and $\tilde{K}$ big enough the final result will be smaller than $\epsilon$. We must also notice that all the estimates and the constant do not depend directly on $u_t(x)$ but on the Gaussian estimates and so they hold uniformly for the whole family of solutions.
\end{proof}
We may notice that the family of the marginals is bounded in $\mathcal{P}^p$ with the Wasserstein metric.
\begin{theorem}
Let $(\mu_i)_{i\in\mathcal{I}}$ be the family of the marginals of solutions to SDEs with the same initial datum and $\alpha$-Holderian coefficients. (Written like this is not very rigorous but for example given $(\mu_t)_{t\in[0,T]}$ the flow of marginals of a solution to an SDE as in the hypothesis we have that $\mu_t$ is an element of the family for every $t\in[0,T]$).
Then the family is bounded as a subset of $\mathcal{P}^p(\R^N)$ equipped with the Wasserstein metric .
\end{theorem}
\begin{proof}
Let $\mu_1$ and $\mu_2$ be elements of the family. Fix $\epsilon>0$. By theorem \ref{t1} we know that exists $K>0$ such that
$$
\int_{B^c_K}\mu_i(dx)<\epsilon,\qquad \int_{B^c_K}|x|^p\mu_i(dx)<\epsilon,\qquad i=1,2.
$$
In particular given a measure $\gamma$ on $\R^{2N}$ with marginals $\mu_1$ and $\mu_2$ we have that exists $\tilde{K}$ (uniformly in $\gamma$) such that
\begin{equation*}
\int_{B^c_{\tilde{K}}}\gamma(dy,dz)\leq \int\int_{B^c_{K}\times B^c_{K}}\gamma(dy,dz)\leq \int\int_{B^c_{K}\times \R^N}\gamma(dy,dz)=\int_{B^c_K}\mu_1(dy)<\epsilon.
\end{equation*}
This also works for the $p$-moment and we get
\begin{equation*}
\int_{B^c_{\tilde{K}}}|y|^p\gamma(dy,dz)\leq \int\int_{B^c_{K}\times B^c_{K}}|y|^p\gamma(dy,dz)\leq \int\int_{B^c_{K}\times \R^N}|y|^p\gamma(dy,dz)=\int_{B^c_K}|y|^p\mu_1(dy)<\epsilon.
\end{equation*}
This means that we can bound the Wasserstein distance between the two in the following way:
\begin{align*}
W^{(p)}(\mu_1,\mu_2)^p&=\inf_{\gamma}\int\int(y-z)^p\gamma(dy,dz)\leq\inf_\gamma \int_{B^c_{\tilde{K}}}(y-z)^p\gamma(dy,dz) + \int_{B_{\tilde{K}}}(y-z)^p\gamma(dy,dz)\\
&\leq C_p\left(\int_{B^c_{\tilde{K}}}|y|^p\gamma(dy,dz) + \int_{B^c_{\tilde{K}}}|z|^p\gamma(dy,dz)\right) + \int_{B_{\tilde{K}}}diam(B_{\tilde{K}})^p\gamma(dy,dz)\\
&\leq 2C_p\epsilon + diam(B_{\tilde{K}})^p.
\end{align*}
\end{proof}
The preceding theorem in particular proves that the $p$-moments are uniformly bounded, for this reason the following theorem is valid in our case.
\begin{theorem}
Let $(\mu_i)_{i\in\mathcal{I}}\subset\mathcal{P}^p(\R^N)$ be a family of probability measures with tightness property as of Theorem \ref{t1} and such that the $p$-moments are uniformly bounded. Then for any sequence $(\mu_n)_{n\in\N}$ there exists a subsequence $(\mu_{n_m})_{m\in\N}$ and a measure $\mu\in\mathcal{P}^p(\R^N)$ such that $$\mu_{n_m}\stackrel{Wasserstein}{\rightarrow}\mu.$$
\end{theorem}
\begin{proof}
By theorem (6.9) of \cite{Villani} we have that Wasserstein convergence in $\mathcal{P}^p$ is equivalent to weak convergence and convergence of the $p$-moment. We know that
$$
\mu_i(B_K^c)<\epsilon,\qquad \int_{B_K^c}|x|^p\mu_i(dx)<\epsilon.
$$
Thus if we define $P_i(dx)=|x|^p\mu_i(dx)$ we have that $(P_i)_{i\in\mathcal{I}}$ is a tight family of uniformly finite measures, in particular we may use a generalization of Prokhorov's theorem (Theorem 8.6.2 of \cite{Bogachev}) and get that for any sequence there exists a subsequence $P_{n_m}$ that converges weakly to a finite measure $P$.
\begin{equation}\label{e10}
P_{n_m}(\phi)\rightarrow P(\phi),\qquad\forall \phi\in C_0^{\infty}(\R^N).
\end{equation}
By using the same theorem on $\mu_{n_m}$ we can find a new subsequence (that will still be witten as $\mu_{n_m}$) such that $\mu_{n_m}$ converges weakly to $\mu$.
\begin{equation}\label{e11}
\mu_{n_m}(\phi)\rightarrow \mu(\phi),\qquad\forall \phi\in C_0^{\infty}(\R^N).
\end{equation}
Consider now $\phi\in C_0^{\infty}(\R^N)$.
\begin{align*}
&\int |x|^p\phi(x)\mu_{n_m}(dx)\stackrel{\eqref{e11}}{\rightarrow} \int |x|^p\phi(x)\mu(dx)\\
&=P_{n_m}(\phi)\stackrel{\eqref{e10}}{\rightarrow} P(\phi).
\end{align*}
By uniqueness of the limit we have for any $\phi\in C_0^{\infty}$ that $P(\phi)=\int|x|^p\phi(x)\mu(dx)$. This proves convergence of the $p$-moment and thus with weak convergence we have Wasserstein convergence.
\end{proof}
%Most probably some of these $L^p$ spaces will need to be changed, for example it could be helpful to only work with $W^{(1)}$ and $L^1$ to follow more closely Kolokoltsov.
\begin{thebibliography}{90}
\bibitem{Bogachev} Vladimir I. Bogachev - Measure Theory (2007)
\bibitem{Kolokoltsov} Vassili N. Kolokoltsov - Nonlinear Diffusions and Stable-Like Processes
with Coefficients Depending on the Median or VaR (2013)
\bibitem{LucePagliaPascu} G. Lucertini, A. Pagliarani, A. Pascucci - Optimal regularity for degenerate Kolmogorov equations in non-divergence form with rough-in-time coefficients (2024), https://doi.org/10.1007/s00028-023-00916-9
\bibitem{YAOZHONG} Yaozhong Hu, Michael A. Kouritzin, Jiayu Zheng - Nonlinear McKean-Vlasov diffusions under the weak Hormander condition with quantile-dependent coefficients (2021), https://arxiv.org/abs/2101.04080
\bibitem{Villani} Cédric Villani - Optimal Transport Old and New (2009)
\end{thebibliography}
\end{document}