
To start off we define the notation for the objects we will work on

dXt = B(t,Xt, µXt
)dt+Σ(t,Xt, µXt

)dWt, X0 ∼ µ0.

Given the flow of marginals µt we can fix the coefficients and linearize the SDE with the linearized coefficients
Bµ(t, x) and Σµ(t, x). Using this, we may define the infinitesimal generator

Aµ
t =

1

2

N∑
i,j=1

cµij(t, x)∂xixj +

N∑
i=1

Bµ
i (t, x)∂xi .

Given this operator, under reasonable assumptions we have the existance of p(s, x; t, y) fundamental solution of

(∂s +Aµ
s )p

µ(s, x; t, y) = 0,

(∂t − (Aµ
t )

∗)pµ(s, x; t, y) = 0.

Having the transition density pµ we may define the forward translation operator

U t,s
µ ϕ(y) =

∫
pµ(s, x; t, y)ϕ(x)dx,

whose definition may be easily extended to P2(RN ) due to the gaussian estimates on p (which are uniform over
the choice of µt):

U t,s
µ u(y) =

∫
pµ(s, x; t, y)u(dx), u ∈ P2(RN ).

Via this operator we may define
uµ
t (x) = U t,0

µ µ0,

the density of the solution of the linearized SDE via the marginal flow (µt)t∈[0,T ] with initial law µ0. Via this
density we are able to construct a new flow of marginals (the one of the solution of the linearized SDE via
marginal flow µt and initial law µ0):

Lµ
t (dy) = uµ

t (y)dy =

(∫
pµ(0, x; t, y)µ0(dx)

)
dy.

Here we will briefly state what [2] does to study the contraction properties on L1 norm of uµ. To start we need
the identity1 (28) of [2]:

U t,0
µ − U t,0

ν =

∫ t

0

d

ds
U t,s
ν Us,0

µ ds =

∫ t

0

U t,s
ν ((Aµ

s )
∗ − (Aν

s )
∗)Us,0

µ ds. (1)

Then we need to observe that

||U t,sf ||L1 =

∫ ∣∣∣∣∫ p(s, x; t, y)f(x)dx

∣∣∣∣ dy
Gaussian estimates

≤ C

∫ ∫
|f(x+ y)|Γ+(y)dydx = C||f ||L1 . (2)

Also observe that

||(Aµ
s −Aν

s )f ||L1 ≤ C sup
t,x

(|cµ(t, x)− cν(t, x)|+ |Bµ(t, x)−Bν(t, x)|) ||f ||W 1,2 ,

and by the fact that the operator Us,0
µ is a bounded operator in W 1,2, check footnote2 we get

||Us,0
µ f ||W 1,2 ≤ C · s−1/2||f ||W 1,2 . (3)

By (1), (2) and (3) we get

||uµ
t − uν

t ||L1 = ||U t,0
µ µ0 − U t,0

µ µ0||L1 ≤ C

∫ t

0

s−1/2ds||µ0||L1 sup
t,x

(|cµ(t, x)− cν(t, x)|+ |Bµ(t, x)−Bν(t, x)|)

≤ C
√
t||µ0||L1 sup

t,x
(|cµ(t, x)− cν(t, x)|+ |Bµ(t, x)−Bν(t, x)|) . (4)

1In my calculations I get the adjoint operator (As)∗ but in Kolokoltsov’s paper there is the backward one.
2I am unsure of this passage, we don’t actually need the 0-derivative and due to gaussian estimates we should get something

similar to ||∂U f ||L1 ≤ s−1/2||f ||L1 and ||∂2U f ||L1 ≤ s−1||f ||L1 where the second derivative is no longer integrable wrt s. I think
something similar to (24.2.7) in dispense is happening.
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Now that we briefly stated the ideas of [2] we can begin.
To leave as many doors open as possible we first define

I(f) :=

∫
f(x)(uµ

t (x)− uν
t (x))dx,

which at the moment may be seen as an indicator of closeness between the two densities, at a later moment
we will take the sup for f in some bounded functional space like the bounded Holder functions or the bounded
functions.

Now we apply this useful trick: if we write explicitly the definition of uµ as the evaluation of pµ on the
distribution µ0 in I(f) we can change the order of integration to evaluate pµ on the regular distribution
f(x)dx, this is useful because it switches the operators in Kolokoltsov’s formula (1) from being forward to being
backwards while changing only marginally everything else. If we define the backward propagator operator

V s,t
µ g(y) :=

∫
pµ(s, y; t, x)g(x)dx, (5)

we can expand I(f) this way

I(f) =

∫ ∫
f(x)(pµ − pν)(0, y; t, x)µ0(dy)dx = µ0

(∫
f(x)(pµ − pν)(0, ·; t, x)dx

)
= µ0

(∫ t

0

d

ds

(∫ ∫
pµ(0, ·; s, z)pν(s, z; t, x)f(x)dxdz

)
ds

)
= µ0

(∫ t

0

∫ ∫
∂t2p

µ(0, ·; s, z)pν(s, z; t, x)f(x)dxdz +
∫ ∫

pµ(0, ·; s, z)∂t1pν(s, z; t, x)f(x)dxdzds
)

by the fact that p is the fundamental solution for both the forward and backward PDEs

= µ0

(∫ t

0

∫ ∫
(Aµ

s )
∗pµ(0, ·; s, z)pν(s, z; t, x)f(x)dxdz −

∫ ∫
pµ(0, ·; s, z)Aν

sp
ν(s, z; t, x)f(x)dxdzds

)
= µ0

(∫ t

0

∫
(Aµ

s )
∗pµ(0, ·; s, z)V s,t

ν f(z)dz −
∫

(Aν
s )

∗pµ(0, ·; s, z)V s,t
ν f(z)dzds

)
= µ0

(∫ t

0

∫
pµ(0, ·; s, z) (Aµ

s −Aν
s )V

s,t
ν f(z)dzds

)
= µ0

(∫ t

0

V 0,s
µ (Aµ

s −Aν
s )V

s,t
ν fds

)
=

∫ t

0

µ0

(
V 0,s
µ (Aµ

s −Aν
s )V

s,t
ν f

)
ds.

Using similar arguments it is possible to obtain also Kolokoltsov’s formula (1):

I(f) =

∫ t

0

f
(
U t,s
ν ((Aµ

s )
∗ − (Aν

s )
∗)Us,0

µ µ0

)
ds.

Now we can try to estimate I(f):

I(f) ≤
∫ t

0

∣∣µ0

(
V 0,s
µ (Aµ

s −Aν
s )V

s,t
ν f

)∣∣ ds,
since µ0 is a probability measure we can bound µ0(g) with the uniform bound of g: µ0(g) ≤ |g|∞:

≤
∫ t

0

sup
x

(
V 0,s
µ (Aµ

s −Aν
s )V

s,t
ν f(x)

)
ds. (6)

We observe that due to Holder’s inequality and the fact that pµ(0, x; s, y)dy is a probability measure for any
fixed x we have uniformly in x

|V 0,s
µ g(x)| =

∣∣∣∣∫ pµ(0, x; s, y)g(y)dy

∣∣∣∣ ≤ ||g||L∞ .

Thus continuing from (6) we have

I(f) ≤
∫ t

0

|| (Aµ
s −Aν

s )V
s,t
ν f(x)||L∞ds ≤

≤ sup
s,x

(|Bµ(s, x)−Bν(s, x)|+ |cµ(s, x)− cν(s, x)|)
∫ t

0

|| ▽ V s,t
ν f ||L∞ + ||Hess V s,t

ν f ||L∞ds.
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Theorem 1. If f is a Cα
B function with ||f ||Cα

B
≤ 1 then

1. ||Hess V s,t
ν f ||L∞ ≤ C

|t−s|1−
α
2
.

Proof.

∣∣∂xixjV
s,t
ν f(x)

∣∣ = ∣∣∣∣∫ ∂xixjp
ν(s, x; t, y)f(y)dy

∣∣∣∣ ≤ ∣∣∣∣∫ ∂xixjp
ν(s, x; t, y)(f(y)− f(e(t−s)Bx))dy

∣∣∣∣+ ∣∣∣∣∫ ∂xixjp
ν(s, x; t, y)dyf(e(t−s)Bx)

∣∣∣∣
≤
∫

|∂xixjp
ν(s, x; t, y)||e(t−s)Bx− y|αBdy +

∣∣∣∣∣∣∣∣∂xixj

∫
pν(s, x; t, y)dy︸ ︷︷ ︸

=1

∣∣∣∣∣∣∣∣ |f(e
(t−s)Bx)|

≤ CB,α

|t− s|

∫
Γ+(t− s, x− y)|x− e−(t−s)By|αBdy + 0 ≤ CB,α

|t− s|1−α
2
.

by Lemma (A.5) of [3].

We will now define

dCα
B
(µ, ν) = sup

||f ||Cα
B
≤1

∣∣∣∣∫ f(x) (µ(dx)− ν(dx))

∣∣∣∣
the bounded anisotropic α-Holder distance.

Theorem 2. The bounded anisotropic α-Holder distance metrizes weak convergence of measures. More precisely
given (µn)n∈N and µ probability measures

dCα
B
(µn, µ) → 0 ⇔ µn

d→ µ.

Proof. The proof will be divided in two steps and is mostly taken from https://sites.stat.washington.

edu/jaw/COURSES/520s/522/HO.522.20/ch11c.pdf

1) First we prove that

µn
d→ µ ⇔

∫
fdµn →

∫
fdµ, ∀f ∈ Cα

B .

If µn
d→ µ then equivalently

∫
fµn →

∫
fµ for any function f ∈ bC which in particular means that it is true

for any f ∈ Cα
B . The converse is true because if

∫
fµn →

∫
fµ for any function f ∈ Cα

B then in particular it is
true for any f ∈ bLip which by Portmanteau’s theorem implies weak convergence.

2) We will now prove that ∫
fdµn →

∫
fdµ ∀f ∈ Cα

B ⇔ dCα
B
(µn, µ) → 0.

The easy implication is the right-to-left one: indeed by comparison theorem

lim
n

∫
f(x) (µn(dx)− µ(dx)) ≤ lim

n
sup

||f ||Cα
B
≤1

∣∣∣∣∫ f(x) (µn(dx)− µ(dx))

∣∣∣∣ = lim
n

dCα
B
(µn, µ) → 0.

The other way is more challenging, first by continuity from below of probability measures for any fixed ϵ > 0
there exists K a compact set such that µ(K) > 1 − ϵ. Let H =

{
f ∈ Cα

B | ||f ||Cα
B
≤ 1
}
, if we restrict each of

these functions on K we have that H|K is totally bounded with respect to the || · ||∞ norm by Ascoli-Arzelà’s
theorem, in particular ∃k finite and f1, · · · fk ∈ H|K such that for any f ∈ H ∃j such that supK |f − fj | ≤ ϵ.

Now if we consider dB(x, y) = |x− y|B and Kϵ =
{
x ∈ RN | dB(x,K) ≤ ϵ

}
and f, fj as before we have

sup
x∈Kϵ

|f(x)− fj(x)| ≤ sup
x∈Kϵ

(|f(x)− f(yx)|+ |f(yx)− fj(yx)|+ |fj(yx)− fj(x)|) ≤ sup
x∈Kϵ

(2ϵα + ϵ) ≤ Cαϵ
α.

where yx is a point in K such that |x− y|B < ϵ. Cα may be taken uniformly of ϵ as long as ϵ ≤ 1.

Let g(x) = max
(
0, 1− dB(x,K)

ϵ

)
, evidently g ∈ bLip ⊆ Cα

B and 1K ≤ g ≤ 1Kϵ . Thus by taking n big enough

we have by convergence against Cα
B functions that

µn(K
ϵ) ≥

∫
g(x)µn(dx) > 1− 2ϵ.

3
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Thus by taking f ∈ H and the associated fj we have∣∣∣∣∫ f(x) (µn(dx)− µ(dx))

∣∣∣∣ = ∣∣∣∣∫ (f(x)− fj(x)) (µn(dx)− µ(dx))

∣∣∣∣+ ∣∣∣∣∫ fj(x) (µn(dx)− µ(dx))

∣∣∣∣
≤
∣∣∣∣∫ (f(x)− fj(x))µn(dx)

∣∣∣∣+ ∣∣∣∣∫ (f(x)− fj(x))µ(dx)

∣∣∣∣+ ∣∣∣∣∫ fj(x) (µn(dx)− µ(dx))

∣∣∣∣
≤
∣∣∣∣∫

Kϵ

(f(x)− fj(x))µn(dx)

∣∣∣∣+
∣∣∣∣∣
∫
(Kϵ)c

(f(x)− fj(x))µn(dx)

∣∣∣∣∣+
∣∣∣∣∫

Kϵ

(f(x)− fj(x))µ(dx)

∣∣∣∣+
+

∣∣∣∣∣
∫
(Kϵ)c

(f(x)− fj(x))µ(dx)

∣∣∣∣∣+
∣∣∣∣∫ fj(x) (µn(dx)− µ(dx))

∣∣∣∣
≤ Cαϵ

α + 4ϵ+ Cαϵ
α + 2ϵ+ ϵ ≤ Cαϵ

α,

where the last term gets bounded by taking n big enough and by using convergence against Cα
B functions, this

gives us the final result.

Theorem 3. For small values of T ; if the coefficients of the SDE are Cα
B functions of y uniformly in (t, x) (the

Cα
B norm is uniformly bounded in (t, x)) we have that the application L : C([0, T ],P(RN )) → C([0, T ],P(RN ))

that L((µt)t∈[0,T ]) = (Lµ
t )t∈[0,T ] is a contraction wrt the distance

d((µt)t∈[0,T ], (νt)t∈[0,T ]) = sup
t∈[0,T ]

dCα
B
(µt, νt).

Proof. We have

dCα
B
(Lµ

t ,Lν
t ) = sup

||f ||Cα
B
≤1

|I(f)| ≤

Th. 1
≤ C sup

s,x
(|Bµ(s, x)−Bν(s, x)|+ |cµ(s, x)− cν(s, x)|)

∫ t

0

(
1

|t− s|1−α
2
+

1√
t− s

)
ds

≤ CT |t|
α
2 sup

s,x
(|Bµ(s, x)−Bν(s, x)|+ |cµ(s, x)− cν(s, x)|) .

Now we observe that since the coefficients are uniformly Cα
B we have

|Bµ(s, x)−Bν(s, x)| =
∣∣∣∣∫ b(s, x, y)µs(dy)−

∫
b(s, x, y)νs(dy)

∣∣∣∣ ≤ CdCα
B
(µs, νs),

where C = ||b||Cα
B
, a priori it depends on (s, x) but since b uniformly Cα

B it can be taken uniformly in (s, x). It
is also possible to prove that

|cµ(s, x)− cν(s, x)| ≤ C||σ||∞dCα
B
(µs, νs).

with these we can conclude that

dCα
B
(Lµ

t ,Lν
t ) ≤ C|t|α2 sup

s∈[0,t]

dCα
B
(µs, νs),

and thus
sup

t∈[0,T ]

dCα
B
(Lµ

t ,Lν
t ) ≤ C|T |α2 sup

t∈[0,T ]

dCα
B
(µt, νt).

which proves contraction for small valus of T .

Remark 4. This approach of having the sup in the distance over the space of functions of the same regularity of
the coefficients of the SDE seems quite natural (b and f in the same bounded space). It doesn’t seem impossible
to use these types of techniques for even broader classes of coefficients as long as there are gaussian estimates.

There is the property of tightness for the family of measures that are solution of an SDE with α-Holder
coefficients and with initial law with finite p-moment:

Theorem 5. Let µ0 ∈ Pp(RN ). Let p(s, x; t, y) be a fundamental solution of a forward Kolmogorov equation
with α-Holderian coefficients so that Gaussian estimates exist. Then for any ϵ > 0 there exists K > 0 such that∫

Bc
K

ut(x)dx < ϵ,

∫
Bc

K

|x|put(x)dx < ϵ.

Where ut(x) =
∫
p(0, y; t, x)µ0(dy).
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Proof. The proof is a little variation of (3.2) in [2]; indeed the first inequality is proved there. Fix ϵ > 0. Let
ϵ̃ > 0 that we will fix later. Since µ0 is a measure with finite p-moment there exists K > 0 such that

µ0(B
c
K) < ϵ̃,

∫
Bc

K

|x|pµ0(dx) < ϵ̃.

Let K̃ > 0 that we will fix later.∫
|x|≥K+K̃

|x|put(x)dx
Gaussian estimates

≤ C

∫
|x|≥K+K̃

|x|p
∫

Γ+(x− ξ, t)µ0(dξ)dx

≤ C

∫
|ξ|≥K,y∈RN

|y + ξ|pΓ+(y, t)µ0(dξ)dy + C

∫
|ξ|≤K,y≥K̃

|y + ξ|pΓ+(y, t)µ0(dξ)dy

≤ Cpµ0(B
c
K)

∫
|y|pΓ+(y, t)dy + Cp

∫
Bc

K

|ξ|pµ0(dξ)

+ Cpµ0(Bk)

∫
Bc

K̃

|y|pΓ+(y, t)dy + Cp

∫
|ξ|pµ0(dξ)

∫
Bc

K̃

Γ+(y, t)dy

The first two terms get bounded by the preliminary inequalities and the fact that the Gaussian has finite p
moment. The last two terms get bounded by a constant C̃p,K̃,T that goes to 0 as K̃ goes to +∞.

≤ CT,pϵ̃+ Cpϵ̃+ CpC̃p,K̃,T + Cp,µ0
C̃p,K̃,T .

if we choose ϵ̃ small enough and K̃ big enough the final result will be smaller than ϵ. We must also notice that
all the estimates and the constant do not depend directly on ut(x) but on the Gaussian estimates and so they
hold uniformly for the whole family of solutions.

We may notice that the family of the marginals is bounded in Pp with the Wasserstein metric.

Theorem 6. Let (µi)i∈I be the family of the marginals of solutions to SDEs with the same initial datum and
α-Holderian coefficients. (Written like this is not very rigorous but for example given (µt)t∈[0,T ] the flow of
marginals of a solution to an SDE as in the hypothesis we have that µt is an element of the family for every
t ∈ [0, T ]).

Then the family is bounded as a subset of Pp(RN ) equipped with the Wasserstein metric .

Proof. Let µ1 and µ2 be elements of the family. Fix ϵ > 0. By theorem 5 we know that exists K > 0 such that∫
Bc

K

µi(dx) < ϵ,

∫
Bc

K

|x|pµi(dx) < ϵ, i = 1, 2.

In particular given a measure γ on R2N with marginals µ1 and µ2 we have that exists K̃ (uniformly in γ) such
that ∫

Bc
K̃

γ(dy, dz) ≤
∫ ∫

Bc
K×Bc

K

γ(dy, dz) ≤
∫ ∫

Bc
K×RN

γ(dy, dz) =

∫
Bc

K

µ1(dy) < ϵ.

This also works for the p-moment and we get∫
Bc

K̃

|y|pγ(dy, dz) ≤
∫ ∫

Bc
K×Bc

K

|y|pγ(dy, dz) ≤
∫ ∫

Bc
K×RN

|y|pγ(dy, dz) =
∫
Bc

K

|y|pµ1(dy) < ϵ.

This means that we can bound the Wasserstein distance between the two in the following way:

W (p)(µ1, µ2)
p = inf

γ

∫ ∫
(y − z)pγ(dy, dz) ≤ inf

γ

∫
Bc

K̃

(y − z)pγ(dy, dz) +

∫
BK̃

(y − z)pγ(dy, dz)

≤ Cp

(∫
Bc

K̃

|y|pγ(dy, dz) +
∫
Bc

K̃

|z|pγ(dy, dz)

)
+

∫
BK̃

diam(BK̃)pγ(dy, dz)

≤ 2Cpϵ+ diam(BK̃)p.

The preceding theorem in particular proves that the p-moments are uniformly bounded, for this reason the
following theorem is valid in our case.
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Theorem 7. Let (µi)i∈I ⊂ Pp(RN ) be a family of probability measures with tightness property as of Theorem 5
and such that the p-moments are uniformly bounded. Then for any sequence (µn)n∈N there exists a subsequence
(µnm

)m∈N and a measure µ ∈ Pp(RN ) such that

µnm

Wasserstein→ µ.

Proof. By theorem (6.9) of [5] we have that Wasserstein convergence in Pp is equivalent to weak convergence
and convergence of the p-moment. We know that

µi(B
c
K) < ϵ,

∫
Bc

K

|x|pµi(dx) < ϵ.

Thus if we define Pi(dx) = |x|pµi(dx) we have that (Pi)i∈I is a tight family of uniformly finite measures, in
particular we may use a generalization of Prokhorov’s theorem (Theorem 8.6.2 of [1]) and get that for any
sequence there exists a subsequence Pnm

that converges weakly to a finite measure P .

Pnm
(ϕ) → P (ϕ), ∀ϕ ∈ C∞

0 (RN ). (7)

By using the same theorem on µnm
we can find a new subsequence (that will still be witten as µnm

) such that
µnm

converges weakly to µ.
µnm

(ϕ) → µ(ϕ), ∀ϕ ∈ C∞
0 (RN ). (8)

Consider now ϕ ∈ C∞
0 (RN ). ∫

|x|pϕ(x)µnm
(dx)

(8)→
∫

|x|pϕ(x)µ(dx)

= Pnm
(ϕ)

(7)→ P (ϕ).

By uniqueness of the limit we have for any ϕ ∈ C∞
0 that P (ϕ) =

∫
|x|pϕ(x)µ(dx). This proves convergence of

the p-moment and thus with weak convergence we have Wasserstein convergence.
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