
1 Introduction

TBD

2 Preliminaries

Definition 1 (bCα space). bCα is the space of bounded α-Holder functions normed by

||f ||bCα = sup
x

|f(x)|+ sup
x ̸=y

|f(x)− f(y)|
|x− y|α

.

Definition 2 (dbCα on P(RN )). We define on P(RN ) the distance

dbCα(µ, ν) = sup
||f ||bCα≤1

∫
f(x) (µ(dx)− ν(dx)) .

Definition 3 (MKV SDE). A MKV SDE is an SDE of the type

dXt = Bt(Xt, [Xt])dt+Σt(Xt, [Xt])dWt,

where Wt is a N -dimensional Brownian Motion, the coefficients are functions B : Ω×[0, T ]×RN×P(RN ) → RN

and Σ : Ω× [0, T ]× RN × P(RN ) → RN×N and lastly [Xt] is the distribution of Xt.

Assumption 4 (Structural Assumption). Consider a MKV SDE where the coefficients are defined as

B(t, x, µ) =

∫
RN

b(t, x, y)µ(dy), Σ(t, x, µ) =

∫
RN

σ(t, x, y)µ(dy),

where b and σ are deterministic functions of b : [0, T ] × RN × RN → RN and σ : [0, T ] × RN × RN → RN×N .
In particular the coefficients are deterministic and the dependence on the distribution is fixed and integral-like.

Assumption 5 (Non degeneracy). The diffusion coefficient Σ defines a uniformly parabolic operator, precisely

∃λ > 0 s.t.
1

λ
|v|2 ≤ ⟨Σ∗(t, x, µ)Σ(t, x, µ)v, v⟩ ≤ λ|v|2, ∀v ∈ RN ,∀(t, x, µ) ∈ [0, T ]× RN × P(RN ),

a sufficient condition for this to occur under assupmtion 4 is if σ is a uniformly positive definite matrix.

3 Results

Theorem 6 (Non-degenerate case). Consider a MKV SDE under assumptions 4 and 5 with α-Holder bounded
coefficients in (x, y) uniformly in t and initial distribution µ0 ∈ P(RN ); then we have weak existance and
uniqueness of the solution of the MKV SDE.

4 Proofs

Proof. of Theorem 6.
The core of the proof is a contraction argument on the space of the flows of marginals, indeed if it is possible

to show that the flow of marginals is unique it can be fixed in the MKV SDE to reduce it to a classical SDE,
at this point weak well posedness results for classical SDEs will conclude the proof.

To begin if we consider a flow of marginals (µt)t∈[0,T ] ∈ C([0, T ],P(RN )) and fix it inside the coefficients we
are able to construct ”linearized” coefficients and a classical SDE

Bµ(t, x) = B(t, x, µt), Σµ(t, x) = Σ(t, x, µt),

dXµ
t = Bµ(t,Xµ

t )dt+Σµ(t,Xµ
t )dWt Xµ

0 ∼ µ0.

We first notice that the function µ → B(t, x, µ) ∈ C(P(RN ),RN ) since

|B(t, x, µ)−B(t, x, ν)| =
∣∣∣∣∫ b(t, x, y) (µ(dy)− ν(dy))

∣∣∣∣ ≤ ||b||bCαdbCα(µ, ν).

Indeed the bounded α-Holder distance metrizes the weak convergence, the proof will be postponed to the
Appendix as theorem 7. Thus since as a function of t B(t, x, µ) ∈ L∞ we have that Bµ ∈ L∞([0, T ], bCα). The
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same is true for Σµ. For this reason due to Theorem 18.2.3 and 18.2.6 of [4] we have weak well posedness of the
”linearized” SDE (with solution Xµ), existance of a fundamental solution and uniform gaussian estimates. In
particular pµ(s, x; t, y) will be the fundamental solution of

(∂s +Aµ
s )p

µ(s, x; t, y) = 0,

(∂t − (Aµ
t )

∗)pµ(s, x; t, y) = 0,

where Aµ
s is the infinitesimal generator of the ”linearized” SDE:

Aµ
s =

1

2

N∑
i,j=1

cµi,j(t, x)∂xixj +

N∑
i=1

Bµ
i (t, x)∂xi ,

with (cµi,j)i,j=1,···N = Σ∗Σ.

At this point we may define respectively the forward and the backward translation operators via (µt)t∈[0,T ]:

U t,s
µ u(y) =

∫
pµ(s, x; t, y)u(dx), u ∈ P(RN ),

V s,t
µ u(x) =

∫
pµ(s, x; t, y)u(dy), u ∈ P(RN ),

and observe that the distribution of Xµ
t is absolutely continuous with density

uµ
t (y) = U t,0

µ µ0.

Thus we may define the application L : C([0, T ],P(RN )) → C([0, T ],P(RN )) such that L((µt)t∈[0,T ]) =
(Lµ

t )t∈[0,T ] = ([Xµ
t ])t∈[0,T ]. Less abstractly this is the application that given a flow of marginals returns the flow

of marginals of the solution of the ”linearized” SDE with the first flow of marginals.
Now we need to observe carefully the definition of dbCα([Xµ

t ], [X
ν
t ]): if we remove the sup we get

I(f) =

∫
f(x) ([Xµ

t ](dx)− [Xν
t ](dx)) =

∫
f(x) (uµ

t (x)− uν
t (x)) dx,

which may be seen as an indicator of closeness between the two distributions. This is useful because by unraveling
the definition of the densities we are able to exchange the order of integration to use the backward translation
operators instead:

I(f) =

∫ ∫
f(x)(pµ − pν)(0, y; t, x)µ0(dy)dx =

∫ ∫
f(x)(pµ − pν)(0, y; t, x)dx µ0(dy)

=

∫ ∫ ∫ t

0

d

ds

(∫
pµ(0, y; s, z)pν(s, z; t, x)f(x)dz

)
ds dx µ0(dy),

Since the fundamental solutions are C1,2 in the time and space variables locally around (s, z) we may exchange
the integral and the derivative

=

∫ ∫ ∫ t

0

∫
∂t2p

µ(0, y; s, z)pν(s, z; t, x)f(x)dz +

∫
pµ(0, y; s, z)∂t1p

ν(s, z; t, x)f(x)dz ds dx µ0(dy),

by the fact that p is the fundamental solution for both the forward and backward PDEs

=

∫ ∫ ∫ t

0

∫
(Aµ

s )
∗pµ(0, y; s, z)pν(s, z; t, x)f(x)dz −

∫
pµ(0, y; s, z)Aν

sp
ν(s, z; t, x)f(x)dz ds dx µ0(dy)

=

∫ ∫ t

0

∫
(Aµ

s )
∗pµ(0, y; s, z)V s,t

ν f(z)dz −
∫

(Aν
s )

∗pµ(0, y; s, z)V s,t
ν f(z)dz ds µ0(dy)

=

∫ ∫ t

0

∫
pµ(0, y; s, z) (Aµ

s −Aν
s )V

s,t
ν f(z)dz ds µ0(dy)

=

∫ ∫ t

0

V 0,s
µ (Aµ

s −Aν
s )V

s,t
ν f(y)ds µ0(dy) =

∫ t

0

∫
V 0,s
µ (Aµ

s −Aν
s )V

s,t
ν f(y)µ0(dy)ds.

Make rigorous: Which in some sense means that instead of transporting forward the initial law via different
flows and testing against f we are transporting backward the test function and then testing the difference
against the initial law.
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At this point it’s easy to see that since µ0 is a probability distribution

I(f) =

∫ t

0

∫
V 0,s
µ (Aµ

s −Aν
s )V

s,t
ν f(y)µ0(dy)ds ≤

∫ t

0

||V 0,s
µ (Aµ

s −Aν
s )V

s,t
ν f ||L∞ds,

due to the definition of V 0,s
µ and the fact that pµ(0, x; s, y)dy is a probability measure we have

≤
∫ t

0

|| (Aµ
s −Aν

s )V
s,t
ν f ||L∞ds

≤ sup
s,x

(|Bµ(s, x)−Bν(s, x)|+ |cµ(s, x)− cν(s, x)|)
∫ t

0

|| ▽ V s,t
ν f ||L∞ + ||Hess V s,t

ν f ||L∞ds.

Now by Proposition 8 if f ∈ bCα with ||f ||bCα ≤ 1 we have

|| ▽ V s,t
ν f ||L∞ ≤ C√

t− s
, ||Hess V s,t

ν f ||L∞ ≤ C

(t− s)1−
α
2
,

which yields for I(f)

I(f) ≤ C sup
s,x

(|Bµ(s, x)−Bν(s, x)|+ |cµ(s, x)− cν(s, x)|)
∫ t

0

(
1

|t− s|1−α
2
+

1√
t− s

)
ds

≤ CT |t|
α
2 sup

s,x
(|Bµ(s, x)−Bν(s, x)|+ |cµ(s, x)− cν(s, x)|) .

Now we observe that since the coefficients are uniformly bCα we have

|Bµ(s, x)−Bν(s, x)| =
∣∣∣∣∫ b(s, x, y)µs(dy)−

∫
b(s, x, y)νs(dy)

∣∣∣∣ ≤ CdbCα(µs, νs),

where C = ||b||Cα
B
, a priori it depends on (s, x) but since b uniformly bCα it can be taken uniformly in (s, x). It

is also possible to prove that
|cµ(s, x)− cν(s, x)| ≤ C||σ||∞dbCα(µs, νs).

with these we can conclude that
I(f) ≤ C|t|α2 sup

s∈[0,t]

dCα
B
(µs, νs),

for any f ∈ bCα with ||f ||bCα ≤ 1 and thus

sup
t∈[0,T ]

dCα
B
(Lµ

t ,Lν
t ) = sup

t∈[0,T ]

sup
||f ||bCα≤1

I(f) ≤ C|T |α2 sup
t∈[0,T ]

dbCα(µt, νt).

which proves contraction for small valus of T for L, now by a classical sequencial argument we may conclude
that there exists a unique flow of marginals (µt)t∈[0,T ] such that [Xµ

t ] = µt, ∀t ∈ [0, T ] and thus Xµ is the
unique weak solution to the MKV SDE.

5 Appendix

Theorem 7. The bounded α-Holder distance metrizes weak convergence of measures. More precisely given
(µn)n∈N and µ probability measures

dbCα(µn, µ) → 0 ⇔ µn
d→ µ.

Proof. The proof will be divided in two steps and is mostly taken from https://sites.stat.washington.

edu/jaw/COURSES/520s/522/HO.522.20/ch11c.pdf

1) First we prove that

µn
d→ µ ⇔

∫
fdµn →

∫
fdµ, ∀f ∈ bCα.

If µn
d→ µ then equivalently

∫
fµn →

∫
fµ for any function f ∈ bC which in particular means that it is true

for any f ∈ bCα. The converse is true because if
∫
fµn →

∫
fµ for any function f ∈ bCα then in particular it

is true for any f ∈ bLip which by Portmanteau’s theorem implies weak convergence.
2) We will now prove that ∫

fdµn →
∫

fdµ ∀f ∈ bCα ⇔ dbCα(µn, µ) → 0.
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The easy implication is the right-to-left one: indeed by comparison theorem

lim
n

∫
f(x) (µn(dx)− µ(dx)) ≤ ||f ||bCα lim

n
sup

||g||bCα≤1

∣∣∣∣∫ g(x) (µn(dx)− µ(dx))

∣∣∣∣ = ||f ||bCα lim
n

dbCα(µn, µ) → 0.

The other way is more challenging, first by continuity from below of probability measures for any fixed ϵ > 0
there exists K a compact set such that µ(K) > 1− ϵ. Let H = {f ∈ bCα | ||f ||bCα ≤ 1}, if we restrict each of
these functions on K we have that H|K is totally bounded with respect to the || · ||∞ norm by Ascoli-Arzelà’s
theorem, in particular ∃k finite and f1, · · · fk ∈ H|K such that for any f ∈ H ∃j such that supK |f − fj | ≤ ϵ.

Now if we consider d(x, y) = |x− y| and Kϵ =
{
x ∈ RN | d(x,K) ≤ ϵ

}
and f, fj as before we have

sup
x∈Kϵ

|f(x)− fj(x)| ≤ sup
x∈Kϵ

(|f(x)− f(yx)|+ |f(yx)− fj(yx)|+ |fj(yx)− fj(x)|) ≤ sup
x∈Kϵ

(2ϵα + ϵ) ≤ Cαϵ
α.

where yx is a point in K such that d(x, yx) < ϵ. Cα may be taken uniformly of ϵ as long as ϵ ≤ 1.

Let g(x) = max
(
0, 1− d(x,K)

ϵ

)
, evidently g ∈ bLip ⊆ bCα and 1K ≤ g ≤ 1Kϵ . Thus by taking n big enough

we have by convergence against bCα functions that

µn(K
ϵ) ≥

∫
g(x)µn(dx) > 1− 2ϵ.

Thus by taking f ∈ H and the associated fj we have∣∣∣∣∫ f(x) (µn(dx)− µ(dx))

∣∣∣∣ = ∣∣∣∣∫ (f(x)− fj(x)) (µn(dx)− µ(dx))

∣∣∣∣+ ∣∣∣∣∫ fj(x) (µn(dx)− µ(dx))

∣∣∣∣
≤

∣∣∣∣∫ (f(x)− fj(x))µn(dx)

∣∣∣∣+ ∣∣∣∣∫ (f(x)− fj(x))µ(dx)

∣∣∣∣+ ∣∣∣∣∫ fj(x) (µn(dx)− µ(dx))

∣∣∣∣
≤

∣∣∣∣∫
Kϵ

(f(x)− fj(x))µn(dx)

∣∣∣∣+
∣∣∣∣∣
∫
(Kϵ)c

(f(x)− fj(x))µn(dx)

∣∣∣∣∣+
+

∣∣∣∣∫
Kϵ

(f(x)− fj(x))µ(dx)

∣∣∣∣+
∣∣∣∣∣
∫
(Kϵ)c

(f(x)− fj(x))µ(dx)

∣∣∣∣∣+
+

∣∣∣∣∫ fj(x) (µn(dx)− µ(dx))

∣∣∣∣
≤ Cαϵ

α + 4ϵ+ Cαϵ
α + 2ϵ+ ϵ ≤ Cαϵ

α,

where the last term gets bounded by taking n big enough and by using convergence against bCα functions, this
gives us the final result.

Proposition 8. If f is a bCα function with ||f ||bCα ≤ 1 then

1. || ▽ V s,t
ν f ||L∞ ≤ C√

t−s
,

2. ||Hess V s,t
ν f ||L∞ ≤ C

|t−s|1−
α
2
.

Proof. 1. Simply by gaussian estimates (Theorem 20.2.5 of [4])∣∣∂xiV
s,t
ν f(x)

∣∣ = ∣∣∣∣∫ ∂xip
ν(s, x; t, y)f(y)dy

∣∣∣∣
≤ C√

t− s

∫
Γ+(t− s, x− y)|f(y)|dy ≤ C√

t− s

2. For the second derivates it is imperative the use of the α-Holderian structure of f∣∣∂xixjV
s,t
ν f(x)

∣∣ = ∣∣∣∣∫ ∂xixjp
ν(s, x; t, y)f(y)dy

∣∣∣∣
≤

∣∣∣∣∫ ∂xixj
pν(s, x; t, y)(f(y)− f(x))dy

∣∣∣∣+ ∣∣∣∣∫ ∂xixj
pν(s, x; t, y)dyf(x)

∣∣∣∣
≤

∫
|∂xixj

pν(s, x; t, y)||x− y|αdy +

∣∣∣∣∣∣∣∣∂xixj

∫
pν(s, x; t, y)dy︸ ︷︷ ︸

=1

∣∣∣∣∣∣∣∣ |f(x)|
≤ C

|t− s|

∫
Γ+(t− s, x− y)|x− y|αdy + 0 ≤ CB,α

|t− s|1−α
2
.
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by Theorem 20.2.5 and Lemma 20.3.4 of [4].
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